Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Immunol ; 151: 61-69, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087461

RESUMO

Dogs are the most common domestic reservoir of Leishmania infantum, making canine visceral leishmaniasis (CVL) a serious public health issue. Identifying new methodologies that can mimic lymphoid and myeloid competence in naturally infected dogs could lower costs and save time in preliminary screenings of potential immunotherapeutic agents and vaccines against CVL. For that, we established a cell-to-cell communication approach between lymphocytes and myeloid cells from healthy, asymptomatic (infected, without apparent clinical signs) and symptomatic (infected with apparent clinical signs) dogs. Peripheral blood mononuclear cells (PBMC) from these dogs were used as source of CD4+, CD8+ T lymphocytes and macrophages, that were posteriorly infected with L. infantum GFP+ promastigotes (green fluorescent protein). Macrophages co-cultured with purified lymphocytes were tested for the ability to control cellular parasitism, and their microbicidal function by producing nitric oxide (NO) and reactive oxygen species (ROS). The kind of T cell response within the co-culture was also evaluated, by assessing their ability to produce interferon-gamma (IFN-γ) and interleukin 4 (IL-4). The data suggests that T lymphocytes from symptomatic dogs are more prone to produce IL-4 than the ones from asymptomatic dogs. Macrophages from asymptomatic dogs also demonstrated a higher microbicidal potential, with increased levels of NO and ROS production, compared to symptomatic dogs, mainly in highly parasitized cells. Together, our results identify the ratio of IL-4/IFN-γ produced by CD4+ and CD8+ T cells, as well as, the ratio between parasite GFP signal/NO and ROS signal in macrophages as potential immunological biomarkers of failure and success of the screened agents. Our findings also propose a reliable methodology that can be used to follow the immune response in trials of potential drugs or vaccines targeting CVL.


Assuntos
Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Animais , Biomarcadores , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Técnicas de Cocultura , Cães , Proteínas de Fluorescência Verde , Interferon gama , Interleucina-4 , Leucócitos Mononucleares , Macrófagos , Óxido Nítrico , Espécies Reativas de Oxigênio
2.
Mol Immunol ; 137: 20-27, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182228

RESUMO

An important strategy to reduce the risk of visceral leishmaniasis (VL) in humans is to control the infection and disease progression in dogs, the domestic reservoir of Leishmania infantum parasites. Certain therapeutic strategies that modulate the host immune response show great potential for the treatment of experimental VL, restoring the impaired effector functions or decreasing host excessive responses. It is known that the overproduction of interleukin-10 (IL-10) promotes parasite replication and disease progression in human VL as well as in canine visceral leishmaniasis (CVL). Thus, in the present study we investigated the potential of the anti-canine IL-10 receptor-blocking monoclonal antibody (Bloq IL-10R) to control and reduce in vitro infectivity of L. infantum and improve the ability of PBMC isolated from VL dogs to alter the lymphoproliferative response and intracytoplasmic cytokines. Overall, GFP+Leishmania showed lower capacity of in vitro infectivity in the presence of Bloq IL-10R. Moreover, addition of Bloq IL-10R in cultured PBMC enhanced T-CD4 and CD8 proliferative response and altered the intracytoplasmic cytokine synthesis, reducing CD4+IL-4+ cells and increasing CD8+IFN-γ+ cells after specific antigen stimulation in PBMC of dogs. Furthermore, we observed an increase of TNF-α levels in supernatant of cultured PBMC under IL-10R neutralizing conditions. Together, our findings are encouraging and reaffirm an important factor that could influence the effectiveness of immune modulation in dogs with VL and suggest that blocking IL-10R activity has the potential to be a useful approach to CVL treatment.


Assuntos
Doenças do Cão/imunologia , Doenças do Cão/parasitologia , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Leucócitos Mononucleares/imunologia , Receptores de Interleucina-10/imunologia , Células Th1/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/parasitologia , Células Cultivadas , Cães , Feminino , Interferon gama/imunologia , Leucócitos Mononucleares/parasitologia , Masculino , Células Th1/parasitologia
3.
J Ethnopharmacol ; 269: 113738, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359866

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lychnophora trichocarpha and Lychnophora passerina are species used in folk medicine to treat inflammation, pain, and rheumatism. Previous studies have demonstrated the anti-inflammatory effect of ethanol extracts of these species and identified that sesquiterpene lactones contribute to this activity. AIM OF THE STUDY: Gout is an acute inflammatory arthritis caused by the deposition of monosodium urate (MSU) crystals in joints. Inflammation in joints induces oxidative stress in defense cells, releasing pro-inflammatory mediators. This study has three objectives: (1) to demonstrate the effects of sesquiterpene lactones lychnopholide and eremantholide C isolated from L. trichocarpha and goyazensolide isolated from L. passerina on arthritis induced by MSU crystals in C57BL6 mice; (2) to determine whether or not these compounds can inhibit the migration of neutrophils and the release of TNF-α and IL-1ß cytokines in the inflammation region; and (3) to evaluate the effects of sesquiterpene lactones on the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in the cartilage of C57BL/6 mice with gouty arthritis. MATERIALS AND METHODS: The anti-inflammatory, antinociceptive, and antioxidant activities of sesquiterpene lactones in C57BL/6 mice with MSU crystal-induced arthritis were evaluated. In our experimental model, the mice were injected with MSU crystals in the tibiofemoral joint to induce arthritis and then treated with indomethacin, vitamin C, and sesquiterpene lactones. Nociception was evaluated before and after inflammation induction and treatments, neutrophil migration, IL-1ß and TNF-α concentrations, and SOD and CAT activities. RESULTS: Sesquiterpene lactones exerted an anti-inflammatory effect by inhibiting neutrophil migration and TNF-α production. These compounds also demonstrated antinociceptive and antioxidant activities. CONCLUSION: Lychnopholide, eremantholide C, and goyazensolide improved the inflammation induced by MSU crystals by inhibiting the migration of neutrophils to the inflamed area and by blocking the release of the pro-inflammatory cytokine TNF-α. In addition, sesquiterpene lactones reduced oxidative stress by activating SOD and CAT. These results suggest that sesquiterpene lactones have anti-gout activity through the inflammation, pain, and oxidative stress pathways.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Artrite Gotosa/tratamento farmacológico , Asteraceae/química , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Artrite Gotosa/induzido quimicamente , Hidrocarbonetos Aromáticos com Pontes/isolamento & purificação , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Catalase/metabolismo , Furanos/isolamento & purificação , Furanos/farmacologia , Furanos/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Articulações/efeitos dos fármacos , Lactonas/isolamento & purificação , Lactonas/uso terapêutico , Masculino , Medicina Tradicional/métodos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/uso terapêutico , Sesterterpenos/isolamento & purificação , Sesterterpenos/farmacologia , Sesterterpenos/uso terapêutico , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Úrico/toxicidade
4.
Environ Mol Mutagen ; 60(8): 740-751, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31095781

RESUMO

The antitumor activity of resveratrol, a polyphenolic compound found mainly in grapes, has been studied in several types of cancer. In bladder cancer, its antiproliferative effects have already been demonstrated; however, its mechanism of action is not completely understood. The aim of this study was to evaluate resveratrol antitumor activity (12.5, 25, 50, 100, 150, 200, and 250 µM) and its possible mechanisms of action in bladder tumor cells with different TP53 gene status (RT4, grade 1, TP53 wild type; 5637-grade 2 and T24-grade 3, TP53 mutated). Cell proliferation, clonogenic survival, morphological changes, cell cycle progression, apoptosis rates, genotoxicity, global methylation, immunocytochemistry for p53 and PCNA and relative expression profiles of the AKT, mTOR, RASSF1A, HOXB3, SRC, PLK1, and DNMT1 were evaluated. Resveratrol decreased cell proliferation and induced DNA damage in all cell lines. Regarding the long-term effects, resveratrol reduced the number of colonies in all cell lines; however, TP53 wild type cells were more resistant. Increased rates of apoptosis were found in the TP53 wild type cells and this was accompanied by AKT, mTOR, and SRC downregulation. In addition, the resveratrol antiproliferative effects in wild type TP53 cells were accompanied by modulation of the DNMT1 gene. In the TP53 mutated cells, cell cycle arrest at S phase with PLK1 downregulation was observed. Additionally, there was modulation of the HOXB3/RASSF1A pathway and nuclear PCNA reduction in the highest-grade cells. In conclusion, resveratrol has antiproliferative activity in bladder tumor cells; however, the mechanisms of action are dependent on TP53 status. Environ. Mol. Mutagen., 60:740-751, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Resveratrol/farmacologia , Proteína Supressora de Tumor p53/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA/genética , Humanos , Antígeno Nuclear de Célula em Proliferação/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/genética , Proteína Supressora de Tumor p53/biossíntese , Quinase 1 Polo-Like
5.
Colloids Surf B Biointerfaces ; 175: 306-313, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553206

RESUMO

Tuberculosis is an infectious bacterial disease that causes millions of deaths worldwide. Current treatment recommended by WHO is effective, however it is an extensive and arduous process associated to severe adverse effects, which induces a low patient compliance and the emerging of multidrug resistant tuberculosis. Thus, as a main goal of this study, rifampicin nanoparticles were surface functionalized with a tuftsin-modifed peptide to selectively recognize receptors located on infected alveolar macrophages, enhancing nanoparticles uptake by these cells and improving antimycobacterial activity. A tuftsin-based modified peptide was synthesized and successfully attached to nanoparticles interface (NP-pRIF). In parallel, nanoparticles without peptide were also developed for comparison (NP-RIF). Physicochemical characterization demonstrated that stable and monodisperse nanodelivery systems were obtained, with a controlled drug release profile and non-cytotoxic potential. Moreover, nanoparticles containing peptide were significantly more internalized by macrophages than nanoparticles without peptide over a wide range of time. Both nanoparticles were 2-fold more effective against M. tuberculosis than free rifampicin, suggesting NP-pRIF as a promising strategy for the management of tuberculosis treatment.


Assuntos
Antituberculosos/farmacologia , Lipídeos/química , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Nanoestruturas/química , Rifampina/farmacologia , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/fisiologia , Rifampina/química , Rifampina/farmacocinética , Tuftsina/química
6.
Front Immunol ; 9: 3137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30728824

RESUMO

Schistosomiasis is a neglected parasitic disease that affects millions of people worldwide and is caused by helminth parasites from the genus Schistosoma. When caused by S. mansoni, it is associated with the development of a hepatosplenic disease caused by an intense immune response to the important antigenic contribution of adult worms and to the presence of eggs trapped in liver tissue. Although the importance of the spleen for the establishment of immune pathology is widely accepted, it has received little attention in terms of the molecular mechanisms operating in response to the infection. Here, we interrogated the spleen proteome using a label-free shotgun approach for the potential discovery of molecular mechanisms associated to the peak of the acute phase of inflammation and the development of splenomegaly in the murine model. Over fifteen hundred proteins were identified in both infected and control individuals and 325 of those proteins were differentially expressed. Two hundred and forty-two proteins were found upregulated in infected individuals while 83 were downregulated. Functional enrichment analyses for differentially expressed proteins showed that most of them were categorized within pathways of innate and adaptive immunity, DNA replication, vesicle transport and catabolic metabolism. There was an important contribution of granulocyte proteins and antigen processing and presentation pathways were augmented, with the increased expression of MHC class II molecules but the negative regulation of cysteine and serine proteases. Several proteins related to RNA processing were upregulated, including splicing factors. We also found indications of metabolic reprogramming in spleen cells with downregulation of proteins related to mitochondrial metabolism. Ex-vivo imunophenotyping of spleen cells allowed us to attribute the higher abundance of MHC II detected by mass spectrometry to increased number of macrophages (F4/80+/MHC II+ cells) in the infected condition. We believe these findings add novel insights for the understanding of the immune mechanisms associated with the establishment of schistosomiasis and the processes of immune modulation implied in the host-parasite interactions.


Assuntos
Proteoma , Proteômica , Schistosoma , Esquistossomose/diagnóstico , Esquistossomose/metabolismo , Esplenomegalia/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Feminino , Imunofenotipagem , Espectrometria de Massas , Camundongos , Proteômica/métodos , Esquistossomose/parasitologia , Baço/citologia , Baço/metabolismo , Esplenomegalia/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA