Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 7(41): 17289-98, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26228582

RESUMO

Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.


Assuntos
Adenoviridae , Fagos Bacilares , Vírus Miúdo do Camundongo , Vírion , Adenoviridae/química , Adenoviridae/ultraestrutura , Animais , Fagos Bacilares/química , Fagos Bacilares/ultraestrutura , Camundongos , Microscopia de Força Atômica , Vírus Miúdo do Camundongo/química , Vírus Miúdo do Camundongo/ultraestrutura , Eletricidade Estática , Vírion/química , Vírion/ultraestrutura
2.
Sci Rep ; 3: 1434, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23486377

RESUMO

The standard pathway for virus infection of eukaryotic cells requires disassembly of the viral shell to facilitate release of the viral genome into the host cell. Here we use mechanical fatigue, well below rupture strength, to induce stepwise disruption of individual human adenovirus particles under physiological conditions, and simultaneously monitor disassembly in real time. Our data show the sequence of dismantling events in individual mature (infectious) and immature (noninfectious) virions, starting with consecutive release of vertex structures followed by capsid cracking and core exposure. Further, our experiments demonstrate that vertex resilience depends inextricably on maturation, and establish the relevance of penton vacancies as seeding loci for virus shell disruption. The mechanical fatigue disruption route recapitulates the adenovirus disassembly pathway in vivo, as well as the stability differences between mature and immature virions.


Assuntos
Adenovírus Humanos/fisiologia , Estresse Mecânico , Adenovírus Humanos/química , Capsídeo/química , Capsídeo/fisiologia , Proteínas do Capsídeo/metabolismo , Humanos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Montagem de Vírus
3.
Ultramicroscopy ; 114: 56-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22356789

RESUMO

Control and minimization of tip-sample interaction forces are imperative tasks to maximize the performance of atomic force microscopy. In particular, when imaging soft biological matter in liquids, the cantilever dragging force prevents identification of the tip-sample mechanical contact, resulting in deleterious interaction with the specimen. In this work we present an improved jumping mode procedure that allows detecting the tip-sample contact with high accuracy, thus minimizing the scanning forces (-100 pN) during the approach cycles. To illustrate this method we report images of human adenovirus and T7 bacteriophage particles which are prone to uncontrolled modifications when using conventional jumping mode.


Assuntos
Adenoviridae/ultraestrutura , Bacteriófago T7/ultraestrutura , Microscopia de Força Atômica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA