Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 224: 346-351, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218122

RESUMO

In this study, we demonstrate that ferroptosis is a component of the cell death mechanism induced by auranofin in HT-1080 cells, in contrast to the gold(III) compounds [Au(phen)Cl2]PF6 and [Au(bnpy)Cl2]. Additionally, we identify a potential role of Prdx6 in modulating the sensitivity of A-375 cells to auranofin treatment, whereas the gold(III) compounds evaluated here exhibit Prdx6-independent cytotoxicity. Finally, using mass spectrometry, we show that auranofin binds selectively to the catalytic Cys47 residue of Prdx6 in vitro under acidic conditions. No binding was observed with the C47S mutant or at neutral pH.

2.
Chemistry ; 30(15): e202304050, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38197477

RESUMO

A low pKa (5.2), high polarizable volume (3.8 Å), and proneness to oxidation under ambient conditions make selenocysteine (Sec, U) a unique, natural reactive handle present in most organisms across all domains of life. Sec modification still has untapped potential for site-selective protein modification and probing. Herein we demonstrate the use of a cyclometalated gold(III) compound, [Au(bnpy)Cl2 ], in the arylation of diselenides of biological significance, with a scope covering small molecule models, peptides, and proteins using a combination of multinuclear NMR (including 77 Se NMR), and LC-MS. Diphenyl diselenide (Ph-Se)2 and selenocystine, (Sec)2 , were used for reaction optimization. This approach allowed us to demonstrate that an excess of diselenide (Au/Se-Se) and an increasing water percentage in the reaction media enhance both the conversion and kinetics of the C-Se coupling reaction, a combination that makes the reaction biocompatible. The C-Se coupling reaction was also shown to happen for the diselenide analogue of the cyclic peptide vasopressin ((Se-Se)-AVP), and the Bos taurus glutathione peroxidase (GPx1) enzyme in ammonium acetate (2 mM, pH=7.0). The reaction mechanism, studied by DFT revealed a redox-based mechanism where the C-Se coupling is enabled by the reductive elimination of the cyclometalated Au(III) species into Au(I).


Assuntos
Cistina/análogos & derivados , Compostos Organosselênicos , Selênio , Animais , Bovinos , Ouro/química , Peptídeos , Glutationa Peroxidase/metabolismo , Selenocisteína/química
3.
Sci Rep ; 11(1): 4953, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654123

RESUMO

Invasion of periodontal tissues by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can be associated with aggressive forms of periodontitis. Oleoresins from different copaifera species and their compounds display various pharmacological properties. The present study evaluates the antibacterial and antivirulence activity of oleoresins obtained from different copaifera species and of ten isolated compounds against two causative agents of periodontitis. The following assays were performed: determination of the minimum inhibitory concentration (MIC), determination of the minimum bactericidal concentration (MBC), and determination of the antibiofilm activity by inhibition of biofilm formation and biofilm eradication tests. The antivirulence activity was assessed by hemagglutination, P. gingivalis Arg-X and Lis-X cysteine protease inhibition assay, and A. actinomycetemcomitans leukotoxin inhibition assay. The MIC and MBC of the oleoresins and isolated compounds 1, 2, and 3 ranged from 1.59 to 50 µg/mL against P. gingivalis (ATCC 33277) and clinical isolates and from 6.25 to 400 µg/mL against A. actinomycetemcomitans (ATCC 43717) and clinical isolates. About the antibiofilm activity, the oleoresins and isolated compounds 1, 2, and 3 inhibited biofilm formation by at least 50% and eradicated pre-formed P. gingivalis and A. actinomycetemcomitans biofilms in the monospecies and multispecies modes. A promising activity concerning cysteine protease and leucotoxin inhibition was also evident. In addition, molecular docking analysis was performed. The investigated oleoresins and their compounds may play an important role in the search for novel sources of agents that can act against periodontal pathogens.


Assuntos
Aggregatibacter actinomycetemcomitans/fisiologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fabaceae/química , Extratos Vegetais/farmacologia , Porphyromonas gingivalis/fisiologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Extratos Vegetais/química
4.
Dalton Trans ; 49(45): 16319-16328, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432260

RESUMO

Gold(i)-phosphine "auranofin-like" compounds have been extensively explored as anticancer agents in the past decade. Although potent cytotoxic agents, the lack of selectivity towards tumorigenic vs. non-tumorigenic cell lines often hinders further application. Here we explore the cytotoxic effects of a series of (R3P)AuL compounds, evaluating both the effect of the basicity and bulkiness of the carrier phosphine (R = Et or Cy), and the leaving group L (Cl-vs. dmap). [Au(dmap)(Et3P)]+ had an IC50 of 0.32 µM against the CEM cell line, with good selectivity in relation to HUVEC. Flow cytometry indicates reduced G1 population and slight accumulation in G2, as opposed to auranofin, which induces a high population of cells with fragmented DNA. Protein expression profile sets [Au(dmap)(Et3P)]+ further apart from auranofin, with proteolytic degradation of caspase-3 and poly(ADP-ribose)-polymerase (PARP), DNA strand-break induced phosphorylation of Chk2 Thr68 and increased p53 ser15 phosphorylation. The cytoxicity and observable biological effects correlate directly with the reactivity trend observed when using the series of gold(i)-phosphine compounds for targeting a model zinc finger, Sp1 ZnF3.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ouro/química , Fosfinas/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Dedos de Zinco , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Fosforilação/efeitos dos fármacos
5.
J Inorg Biochem ; 187: 85-96, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30081333

RESUMO

The bis-(1,10-phenanthroline)copper(I) complex, [Cu(I)(phen)2]+, was the first copper-based artificial nuclease reported in the literature. The biological and ligand-like properties of sulfonamides make them good candidates for fine-tuning the reactivity of the [Cu(phen)2] motif with biomolecules. In this context, we developed three novel copper(II) complexes containing the sulfonamides sulfameter (smtrH) and sulfadimethoxine (sdmxH) and (N^N)-bidentate ligands (2,2'-biyridine or 1,10-phenantroline). The compounds were characterized by chemical and spectroscopic techniques and single-crystal X-ray crystallography. When targeting plasmid DNA, the phen-containing compounds [Cu(smtr-)2(phen)] (1) and [Cu(sdmx-)2(phen)] (2) demonstrated nuclease activity even in the absence of reducing agents. Addition of ascorbic acid resulted in a complete cleavage of DNA by 1 and 2 at concentrations higher than 10 µM. Experiments designed to evaluate the copper intermediates involved in the nuclease effect after reaction with ascorbic acid identified at least the [Cu(I)(N^N)2]+, [Cu(I)(sulfa)(N^N)]+ and [Cu(I)(sulfa)2]+ species. The compounds interact with DNA via groove binding and intercalation as verified by fluorescence spectroscopy, circular dichroism (CD) and molecular docking. The magnitude and preferred mode of binding are dependent on the nature of both N^N ligand and the sulfonamide. The potent nuclease activity of compounds 1 and 2 are well correlated with their antiproliferative and anti-M. tuberculosis profiles. The results presented here demonstrated the potential for further development of copper(II)-sulfonamide-(N^N) complexes as multipurpose metallodrugs.


Assuntos
Antituberculosos , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação , Cobre , Desoxirribonucleases , Mycobacterium tuberculosis/crescimento & desenvolvimento , Sulfonamidas , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Clivagem do DNA/efeitos dos fármacos , Desoxirribonucleases/síntese química , Desoxirribonucleases/química , Desoxirribonucleases/farmacologia , Humanos , Células K562 , Células MCF-7 , Simulação de Acoplamento Molecular , Sulfonamidas/química , Sulfonamidas/farmacologia
6.
Angew Chem Int Ed Engl ; 57(30): 9305-9309, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29870126

RESUMO

Reaction of the Au-C N chelate [Au(bnpy)Cl2 ] with the full-length zinc finger (ZnF; ZnCys3 His) of HIV nucleocapsid protein NCp7 results in C-S aryl transfer from the AuIII organometallic species to a cysteine of the ZnF. The reaction is general and occurs even for finger 3 of the transcription factor Sp1, containing a ZnCys2 His2 coordination sphere. This reaction is the first demonstration of group transfer from a coordination compound to biologically important zinc fingers, and is especially noteworthy for the ZnCys2 His2 transcription factors. The work expands the corpus of organometallic species which can efficiently modify biomolecules through C-atom transfer. The electronic features of the gold compound leading to this unexpected reaction were explored by X-ray absorption spectroscopy.


Assuntos
Dedos de Zinco CYS2-HIS2 , Carbono/química , Ouro/química , HIV/química , Proteínas do Nucleocapsídeo/química , Enxofre/química , Catálise , Estrutura Molecular
7.
Inorg Chem ; 56(20): 12308-12318, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28937773

RESUMO

In this work, we examined a series of thiophilic Au(I) compounds based on [Au(L)(PR3)] (L = Cl-, 4-dimethylaminopyridine (dmap); R= ethyl (Et), cyclohexyl (Cy)) for chemoselective auration of the C-terminal HIV nucleocapsid protein NCp7 F2 and the "full" HIV NCp7 (NC, zinc finger (ZnF)) as probes of nucleocapsid topography. The choice of phosphine allowed electronic and steric effects to be considered. The use of the heterocycle "leaving group" allowed us to study the effect of possible π-stacking with the essential tryptophan residue of NC on the reactivity and selectivity, mimicking the naturally occurring interaction between the zinc finger and nucleic acids. We also examined for comparison the "standard" gold-phosphine compound auranofin, which contains an S-bound glucose coordinated to the {Au(PEt3)} moiety. Both the nature of the phosphine and the nature of L affect the reactivity with the C-terminal NCp7 F2 and the "full" NC. 31P NMR spectroscopy showed the formation of long-lived {Au(PR3)}-ZnF species in all cases, but in the case of NCp7 F2, a selective interaction in the presence of the dmap ligand was observed. In the case of auranofin, an unusual Au-His (rather than Au-Cys) coordination was indicated on NC. The overall results suggest that it is useful to consider three aspects of zinc finger structure in considering the profile of chemical reactivity: (i) the zinc-bound cysteines as primary nucleophiles; (ii) the zinc-bound histidine as a "spectator" ligand; and (iii) ancillary groups not bound to Zn but essential for ZnF function such as the essential tryptophan in NCp7 F2 and NC. Modification of fully functional NC zinc finger by the Cy3P-containing species confirmed the inhibition of the NC-SL2 DNA interaction, as evaluated by fluorescence polarization.

8.
Dalton Trans ; 45(21): 8712-6, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27171123

RESUMO

cis-DDP presents reactivity towards the transcription factor Sp1-F3, as opposed to previous observations for Sp1-F2. Replacing the ammine ligands with the chelating ethylenediamine increases the reactivity giving a unique dinuclear {Pt(en)}2-bis(cysteine)-bridged product, confirmed by study of the binding sequence ACPECP.


Assuntos
Complexos de Coordenação/química , Platina/química , Fator de Transcrição Sp1/química , Sequência de Aminoácidos , Complexos de Coordenação/metabolismo , Humanos , Isomerismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ligação Proteica , Fator de Transcrição Sp1/metabolismo , Dedos de Zinco
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 122: 209-15, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24316534

RESUMO

A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C11H11N2O2)2]⋅6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The (13)C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the (15)N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells.


Assuntos
Bioensaio/métodos , Modelos Moleculares , Platina/farmacologia , Teoria Quântica , Triptofano/síntese química , Triptofano/farmacologia , Células 3T3 , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espectrometria de Massas , Camundongos , Conformação Molecular , Platina/química , Espectrofotometria Infravermelho , Termogravimetria , Triptofano/química , Vibração
10.
Inorg Chem ; 52(19): 11280-7, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24063530

RESUMO

The syntheses and the characterization by chemical analysis, (1)H and (31)P NMR spectroscopy, and mass spectrometry of a series of linear triphenylphosphine gold(I) complexes with substituted N-heterocycle ligands (L), [(PPh3)Au(I)(L)](+), is reported. The reaction of [(PPh3)Au(L)](+) (L = Cl(-) or substituted N- heterocyclic pyridine) with the C-terminal (Cys3His) finger of HIVNCp7 shows evidence by mass spectrometry (ESI-MS) and (31)P NMR spectroscopy of a long-lived {(PPh3)Au}-S-peptide species resulting from displacement of the chloride or pyridine ligand by zinc-bound cysteine with concomitant displacement of Zn(2+). In contrast, reactions with the Cys2His2 finger-3 of the Sp1 transcription factor shows significantly reduced intensities of {(PPh3)Au} adducts. The results suggest the possibility of systematic (electronic, steric) variations of "carrier" group PR3 and "leaving" group L as well as the nature of the zinc finger in modulation of biological activity. The cytotoxicity, cell cycle signaling effects, and cellular accumulation of the series are also reported. All compounds display cytotoxicity in the micromolar range upon 96 h continuous exposure to human tumor cells. The results may have relevance for the reported inhibition of viral load in simian virus by the gold(I) drug auranofin.


Assuntos
Ouro/química , Compostos Heterocíclicos/química , Fosfinas/química , Dedos de Zinco , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Ouro/farmacologia , Compostos Heterocíclicos/farmacologia , Humanos , Concentração Inibidora 50 , Ligantes , Espectroscopia de Ressonância Magnética , Fosfinas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA