Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(6): 1341-1356, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36867369

RESUMO

Prostate cancer is the most common cancer in American men, aside from skin cancer. As an alternative cancer treatment, photodynamic laser therapy (PDT) can be used to induce cell death. We evaluated the PDT effect, using methylene blue as a photosensitizer, in human prostate tumor cells (PC3). PC3 were subjected to four different conditions: DMEM (control); laser treatment (L-660 nm, 100 mW, 100 J.cm-2); methylene blue treatment (MB-25 µM, 30 min), and MB treatment followed by low-level red laser irradiation (MB-PDT). Groups were evaluated after 24 h. MB-PDT treatment reduced cell viability and migration. However, because MB-PDT did not significantly increase the levels of active caspase-3 and BCL-2, apoptosis was not the primary mode of cell death. MB-PDT, on the other hand, increased the acid compartment by 100% and the LC3 immunofluorescence (an autophagy marker) by 254%. Active MLKL level, a necroptosis marker, was higher in PC3 cells after MB-PDT treatment. Furthermore, MB-PDT resulted in oxidative stress due to a decrease in total antioxidant potential, catalase levels, and increased lipid peroxidation. According to these findings, MB-PDT therapy is effective at inducing oxidative stress and reducing PC3 cell viability. In such therapy, necroptosis is also an important mechanism of cell death triggered by autophagy.


Assuntos
Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Fotoquimioterapia/métodos , Sobrevivência Celular , Azul de Metileno/farmacologia , Necroptose , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Próstata/tratamento farmacológico
2.
Lasers Med Sci ; 37(9): 3661-3670, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36156751

RESUMO

Matrix metalloproteinases (MMPs) play a crucial role in the degenerative course of rheumatic disorders. They are responsible for cartilage and other joint-associated tissues breakdown. Amid arthritis treatments, photobiostimulation (PBM), a non-thermal and non-invasive low-power laser application, appears to be an outstanding therapy alternative once it has succeeded in MMPs modulation. Thus, this study aimed to evaluate the PBM effects of low infrared laser (830 nm), testing two different energy densities (3 and 30 Jcm-2) in MMP-2, MMP-9, MMP-13, and MMP-14 as well as the inhibitor TIMP-2 expressions using zymosan-induced arthritis model. C57BL/6 mice were distributed into four groups (n = 8): zymosan-induced arthritis without treatment; zymosan-induced arthritis and dexamethasone-treated; zymosan-induced arthritis and PBM at energy density of 3 Jcm-2 treated; and zymosan-induced arthritis and PBM at energy density of 30 Jcm-2 treated. MMPs and TIMP-2 mRNA relative levels by qRT-PCR and proteins expression by immunohistochemical and Western blotting techniques were performed after PBM treatment in the inflamed joint. Our results demonstrated PBM could modulate both mRNA relative levels and proteins expression of the MMP-2, -9, -13, -14, and TIMP-2 in joint tissues, decreasing MMP-9 protein expression and increasing TIMP-2 protein expression. PBM promotes a better arthritis prognostic, modulating metalloproteinase and its inhibitor, especially MMP-9 and TIMP-2 protein expression that is important inflammatory markers. These findings may also corroborate that PBM may regulate MMPs expression using different pathways.


Assuntos
Artrite , Terapia com Luz de Baixa Intensidade , Animais , Camundongos , Artrite/induzido quimicamente , Artrite/genética , Artrite/radioterapia , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Zimosan
3.
Lasers Med Sci ; 37(5): 2353-2362, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35288806

RESUMO

Gene expression evaluation in cells and biological tissues has been crucial for research in biology, medicine, biotechnology, and diagnostic. Messenger ribonucleic acid (mRNA) levels show relationship with gene expression, and they can be measured by real-time quantitative polymerase chain reaction (RT-qPCR) for the quantification of steady-state mRNA levels in cells and biological tissues. Radiations emitted from low-power lasers induce photobiomodulation, which is the base of therapeutic protocols for disease treatment. Despite that the understanding on photobiomodulation has been improved by mRNA level evaluation, laser irradiation parameters and procedures are diversified among studies, harming the comparison of RT-qPCR data. In this systematic review, data from mRNA levels reported in photobiomodulation studies were summarized regarding the process, function, and gene. Literature search was conducted for the assessment of published reports on mRNA levels evaluated by RT-qPCR in cells and biological tissues exposed to low-power lasers. Data showed that mRNA levels have been evaluated by RT-qPCR for a variety of genes related to molecular, cellular, and systemic processes after low-power violet-orange, red, and infrared laser exposure. Results from gene expression have increased the understanding of the mechanisms involved in photobiomodulation, and they can be useful to increase the efficacy and safety of clinical applications based on low-power lasers.


Assuntos
Terapia com Luz de Baixa Intensidade , Lasers , Luz , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Lasers Med Sci ; 36(6): 1139-1150, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33387079

RESUMO

Radiations emitted by low power radiation sources have been applied for therapeutic proposals due to their capacity of inactivating bacteria and cancer cells in photodynamic therapy and stimulating tissue cells in photobiomodulation. Exposure to these radiations could increase cell proliferation in bacterial cultures under stressful conditions. Cells in infected or not infected tissue injuries are also under stressful conditions and photobiomodulation-induced regenerative effect on tissue injuries could be related to effects on stressed cells. The understanding of the effects on cells under stressful conditions could render therapies based on photobiomodulation more efficient as well as expand them. Thus, the objective of this review was to update the studies reporting photobiomodulation on prokaryotic and eukaryotic cells under stress conditions. Exposure to radiations emitted by low power radiation sources could induce adaptive responses enabling cells to survive in stressful conditions, such as those experienced by bacteria in their host and by eukaryotic cells in injured tissues. Adaptive responses could be the basis for clinical photobiomodulation applications, either considering their contraindication for treatment of infected injuries or indication for treatment of injuries, inflammatory process resolution, or tissue regeneration.


Assuntos
Bactérias/citologia , Bactérias/efeitos da radiação , Células Eucarióticas/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Estresse Fisiológico/efeitos da radiação , Humanos
5.
Lasers Med Sci ; 35(8): 1841-1848, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32483748

RESUMO

Photobiomodulation (PBM) has been used to modulate the inflammatory and immune responses, pain relief, and to promote wound healing. PBM is widely used in dental practice and its cellular effects should be investigated. The aim was to evaluate if PBM changes proteins cell death-related, such as caspase-6 and Bcl-2, in periodontal ligament cells. Eighteen mice were divided in three groups (n = 6), i.e., (I) control, (II) 3 J cm-2, and (III) 30 J cm-2. Low power infrared laser (830 nm) parameters were power at 10 mW, energy densities at 3 and 30 J cm-2 in continuous emission mode, exposure time of 15 and 150 s, respectively for 4 days in a row. Twenty-four hours after last irradiation, the animals were euthanized, and their jaws were fixed and decalcified. Caspase-6 and Bcl-2 were analyzed by real-time polymerase chain reaction and immunocytochemical techniques, and DNA fragmentation was evaluated by TUNEL. Statistical differences were not significant to caspase-6 mRNA relative levels in tissues from jaws at both energy densities, but a significant increase of Bcl-2 mRNA relative levels was obtained at 30 J cm-2 group. Also, 30 J cm-2 group showed caspase-6 positive-labeled cells decreased and Bcl-2 positive-labeled cells significantly increased. TUNEL-labeled cells demonstrated DNA fragmentation decreased at 30 J cm-2. PBM can alter Bcl-2 mRNA relative level and both caspase-6 and Bcl-2 protein, modulating cell survival, as well as to reduce DNA fragmentation. More studies must be performed in order to obtain conclusive results about photobiostimulation effects using infrared low-level laser in apoptosis process as to achieve the optimum dosage.


Assuntos
Apoptose/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Ligamento Periodontal/citologia , Animais , Sobrevivência Celular/efeitos da radiação , Fragmentação do DNA/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Cicatrização/efeitos da radiação
6.
J Lasers Med Sci ; 10(3): 157-162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749939

RESUMO

Introduction: Low-level lasers are successfully used to prevent and treat diseases in soft oral and bone tissues, particularly diseases in oral cavity caused by chemotherapy and radiotherapy in oncology. However, controversy exists as to whether these lasers induce molecular side effects, mainly on DNA. The aim of this work was to assess the effects of low-power lasers on mutant Escherichia coli cells in DNA repair. Methods: Escherichia coli wild type cultures as well as those lacking recombination DNA repair (recA -) and la SOS responses (lexA -) irradiated with lasers at different energy densities, powers, and emission modes for cell viability and morphology assessment were used in this study. Results: Laser irradiation: (i) did not affect cell viability of non-mutant and lexA - cells but decreased viability in recA - cultures; (ii) altered morphology of wild type and lexA, depending on the energy density, power, emission mode, and wavelength. Conclusion: Results show that low-level lasers have lethal effects on both recombination DNA repair and SOS response bacterial cells but do not induce morphological modifications in these cells.

7.
Photochem Photobiol Sci ; 17(7): 975-983, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29922788

RESUMO

Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are defined as pulmonary inflammation that could occur from sepsis and lead to pulmonary permeability and alveolar edema making them life-threatening diseases. Photobiomodulation (PBM) properties have been widely described in the literature in several inflammatory diseases; although the mechanisms of action are not always clear, this could be a possible treatment for ARDS/ALI. Thus, the aim of this study was to evaluate the mRNA levels from caspase-3 and BCL-2 genes and DNA fragmentation in lung tissue from Wistar rats affected by ALI and subjected to photobiomodulation by exposure to a low power infrared laser (808 nm; 100 mW; 3.571 W cm-2; four points per lung). Adult male Wistar rats were randomized into 6 groups (n = 5, for each group): control, PBM10 (10 J cm-2, 2 J and 2 seconds), PBM20 (20 J cm-2, 5 J and 5 seconds), ALI, ALI + PBM10 and ALI + PBM20. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide injection. Lung samples were collected and divided for mRNA expression of caspase-3 and Bcl-2 and DNA fragmentation quantifications. Data show that caspase-3 mRNA levels are reduced and Bcl-2 mRNA levels increased in ALI after low power infrared laser exposure when compared to the non-exposed ALI group. DNA fragmentation increased in inflammatory infiltrate cells and reduced in alveolar cells. Our research shows that photobiomodulation can alter relative mRNA levels in genes involved in the apoptotic process and DNA fragmentation in inflammatory and alveolar cells after lipopolysaccharide-induced acute lung injury. Also, inflammatory cell apoptosis is part of the photobiomodulation effects induced by exposure to a low power infrared laser.


Assuntos
Lesão Pulmonar Aguda/terapia , Caspase 3/genética , Fragmentação do DNA/efeitos da radiação , Genes bcl-2/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Pulmão/patologia , RNA Mensageiro/genética , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Pulmão/metabolismo , Pulmão/efeitos da radiação , Masculino , Ratos Wistar
8.
Inflammation ; 41(1): 174-182, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28975419

RESUMO

The response of lungs with emphysema to an acute lung injury (ALI) remains unclear. This study compared the lung response to intratracheal instillation of lipopolysaccharide (LPS) in rats with and without emphysema. Twenty-four Wistar rats were randomized to four groups: control group (C-G), ALI group (ALI-G), emphysema group (E-G), emphysema and ALI group (E-ALI-G). Euthanasia and the following analysis were performed 24 h after ALI induction: lung histology, bronchoalveolar lavage (BAL), mRNA expression of inflammatory mediators, and blood gas measures. The histological analysis showed that animals of ALI-G (0.55 ± 0.15) and E-ALI-G (0.69 ± 0.08) had a higher ALI score compared to C-G (0.12 ± 0.04) and E-G (0.16 ± 0.04) (p < 0.05). The analysis of each component of the score demonstrated that ALI-G and E-ALI-G had greater alveolar and interstitial neutrophil infiltration, as well as greater amount of alveolar proteinaceous debris. Comparing the two groups that received LPS, there was a trend of higher ALI in the E-ALI-G, specially due to a higher neutrophil infiltration in the alveolar spaces and a higher septal thickening. Total cell count (E-G = 3.09 ± 0.83; ALI-G = 4.45 ± 1.9; E-ALI-G = 5.9 ± 2.1; C-G = 0.73 ± 0.37 × 105) and neutrophil count (E-G = 0.69 ± 0.35; ALI-G = 2.53 ± 1.09; E-ALI-G = 3.86 ± 1.4; C-G = 0.09 ± 0.07 × 105) in the BAL were higher in the groups E-G, ALI-G, and E-ALI-G when compared to C-G (p < 0.05). The IL-6, TNF-α, and CXCL2 mRNA expressions were higher in the animals that received LPS (ALI-G and E-ALI-G) compared to the C-G and E-G (p < 0.05). No statistically significant difference was observed in the BAL cellularity and in the expression of inflammatory mediators between the ALI-G and the E-ALI-G. The severity of ALI in response to intratracheal instillation of LPS did not show difference in rats with and without intratracheal-induced emphysema.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lipopolissacarídeos , Elastase Pancreática , Alvéolos Pulmonares/patologia , Enfisema Pulmonar/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Permeabilidade Capilar , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Infiltração de Neutrófilos , Alvéolos Pulmonares/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
9.
COPD ; 14(4): 439-450, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28605262

RESUMO

Chronic obstructive pulmonary disease (COPD) is the fourth cause of death in the world and it is currently presenting a major global public health challenge, causing premature death from pathophysiological complications and rising economic and social burdens. COPD develops from a combination of factors following exposure to pollutants and cigarette smoke, presenting a combination of both emphysema and chronic obstructive bronchitis, which causes lung airflow limitations that are not fully reversible by bronchodilators. Oxidative stress plays a key role in the maintenance and amplification of inflammation in tissue injury, and also induces DNA damages. Once the DNA molecule is damaged, enzymatic mechanisms act in order to repair the DNA molecule. These mechanisms are specific to repair of oxidative damages, such as nitrogen base modifications, or larger DNA damages, such as double-strand breaks. In addition, there is an enzymatic mechanism for the control of telomere length. All these mechanisms contribute to cell viability and homeostasis. Thus, therapies based on modulation of DNA repair and genomic stability could be effective in improving repair and recovery of lung tissue in patients with COPD.


Assuntos
Dano ao DNA , Reparo do DNA , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/genética , Encurtamento do Telômero , Humanos , Inflamação/complicações , Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Homeostase do Telômero
10.
Lasers Med Sci ; 32(5): 975-983, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382433

RESUMO

Anti-inflammatory property of low-level laser therapy (LLLT) has been widely described in literature, although action mechanisms are not always clarified. Thus, this study aimed to evaluate apoptosis mechanisms in the LLLT anti-inflammatory effects on the arthritis experimental model in vivo at two different energy densities (3 and 30 Jcm-2). Arthritis was induced in mice by zymosan solution, animals were distributed into five groups, and morphological analysis, immunocytochemistry and gene expressions for apoptotic proteins were performed. Data showed an anti-inflammatory effect, DNA fragmentation in polymorphonuclear (PMN) cells and alteration in gene expression of proteins related to apoptosis pathways after LLLT. p53 gene expression increased at both energy densities, Bcl2 gene expression increased at 3 Jcm-2, and Bcl2 tissue expression decreased at 30 Jcm-2. In addition, apoptosis was restricted to PMN cells. Results suggest that apoptosis in PMN cells comprise part of LLLT anti-inflammatory mechanisms by disbalance promotion between expression of pro-apoptotic (Bax and p53) and anti-apoptotic (Bcl-2) proteins, with pro-apoptotic gene expression selectively in PMN cells.


Assuntos
Apoptose/efeitos da radiação , Inflamação/patologia , Articulações/patologia , Terapia com Luz de Baixa Intensidade , Neutrófilos/patologia , Neutrófilos/efeitos da radiação , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Artrite Experimental/genética , Artrite Experimental/patologia , Artrite Experimental/radioterapia , Fragmentação do DNA/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Inflamação/genética , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zimosan
11.
J Cosmet Laser Ther ; 19(4): 227-231, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28296509

RESUMO

Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Expressão Gênica , Terapia com Luz de Baixa Intensidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Músculo Esquelético/metabolismo , RNA Mensageiro , Ratos , Ratos Wistar
12.
J Invest Surg ; 30(6): 368-375, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27901623

RESUMO

PURPOSE: The spleen presents numerous functions, including the production of immunoglobulins and blood filtration, removing microorganisms and cellular debris. The spleen also has anatomical and functional relationship with the liver, but there are few studies on this topic. The aim of this study was to assess the effect of splenectomy and autologous spleen transplantation on both filtering functions of spleen and acetaminophen-induced hepatotoxicity. MATERIALS AND METHODS: Fifty-two BALB/c mice were randomized into four groups: splenectomized; splenectomy and splenic autotransplantation in the greater omentum; sham operated control; and non-operated control. At day 7th, 14th, and 28th after surgery, splenic filtration was assessed by counting Howell-Jolly bodies (HJB) and pitted red cells (PIT). The animals received 400 mg/kg acetaminophen by gavage at day 28th and after 12 or 24 hours were euthanized for evaluation of splenic and hepatic morphology. RESULTS: The splenectomized group demonstrated reduced filtration of HJB and PIT in all analyzes, while the autotransplanted group developed progressive recovery of function after the 14th day. At day 28 after surgery the implants showed similar histology in comparison to normal spleen. Liver histology showed more intense centrilobular necrosis in splenectomized group in comparison to the others, suggesting a protective role of spleen in acetaminophen-induced liver injury. CONCLUSIONS: Splenic implants showed structural and functional recovery, demonstrating the ability of autologous implant to rescue filtering function of intact spleen. Furthermore, the integrity of splenic function appears to influence liver morphology, since the presence of the splenic implants mitigated the effects of chemically-induced liver damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/cirurgia , Fígado/patologia , Baço/transplante , Esplenectomia/efeitos adversos , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Inclusões Eritrocíticas , Feminino , Humanos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Necrose , Baço/fisiologia , Esplenectomia/métodos , Transplante Autólogo/efeitos adversos , Transplante Autólogo/métodos , Resultado do Tratamento
13.
Int J Exp Pathol ; 97(6): 430-437, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28008677

RESUMO

Abnormalities in lungs caused by emphysema might alter their response to sepsis and the occurrence of acute lung injury (ALI). This study compared the extension of ALI in response to intraperitoneal lipopolysaccharide (LPS) injection in Wistar rats with and without emphysema induced by elastase. Adult male Wistar rats were randomized into four groups: control, emphysema without sepsis, normal lung with sepsis and emphysema with sepsis. Sepsis was induced, and 24 h later the rats were euthanised. The following analysis was performed: blood gas measurements, bronchoalveolar lavage (BAL), lung permeability and histology. Animals that received LPS showed significant increase in a lung injury scoring system, inflammatory cells in bronchoalveolar lavage (BAL) and IL-6, TNF-α and CXCL2 mRNA expression in lung tissue. Animals with emphysema and sepsis showed increased alveolocapillary membrane permeability, demonstrated by higher BAL/serum albumin ratio. In conclusion, the presence of emphysema induced by elastase increases the inflammatory response in the lungs to a systemic stimulus, represented in this model by the intraperitoneal injection of LPS.


Assuntos
Lesão Pulmonar Aguda/patologia , Elastase Pancreática/efeitos adversos , Enfisema Pulmonar/patologia , Síndrome do Desconforto Respiratório/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Injeções Intraperitoneais , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Sepse/induzido quimicamente , Sepse/metabolismo , Sepse/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Lasers Surg Med ; 47(4): 361-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25740459

RESUMO

BACKGROUND AND OBJECTIVE: In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. MATERIAL AND METHODS: Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. RESULTS: Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. CONCLUSION: Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers.


Assuntos
Células Sanguíneas/efeitos da radiação , Dano ao DNA/efeitos da radiação , Lasers , Animais , Ensaio Cometa , DNA-Formamidopirimidina Glicosilase/farmacologia , Endodesoxirribonucleases/farmacologia , Ratos Wistar
15.
Lasers Med Sci ; 28(4): 1077-84, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22941447

RESUMO

Special properties of laser light have led to its usefulness in many applications in therapy. Excitation of endogenous chromophores in biotissues and generation of free radicals could be involved in its biological effects. DNA lesions induced by free radicals are repaired by base excision repair pathway. In this work, we evaluated the expression of APE1 and OGG1 genes related to repair of DNA lesions induced by free radicals. Skin and muscle tissues of Wistar rats were exposed to low-intensity infrared laser at different fluences and frequencies. After laser exposition of 1 and 24 h, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of APE1 and OGG1 gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of APE1 and OGG1 mRNA differently in skin and muscle tissues of Wistar rats depending of the fluence, frequency, and time after exposure. Our study suggests that low-intensity infrared laser affects expression of genes involved in repair of DNA lesions by base excision repair pathway.


Assuntos
Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Animais , DNA Glicosilases/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Expressão Gênica/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Masculino , Músculos/metabolismo , Músculos/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Pele/metabolismo , Pele/efeitos da radiação
16.
Lasers Med Sci ; 27(1): 211-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21701880

RESUMO

Low-intensity laser therapy is based on the excitation of endogenous chromophores in biotissues and free-radical generation could be involved in its biological effects. In this work, the effects of the low-intensity infrared laser on plasma protein content and oxidative stress in blood from Wistar rats were studied. Blood samples from Wistar rats were exposed to low-intensity infrared laser in continuous wave and pulsed-emission modes at different fluencies. Plasma protein content and two oxidative stress markers (thiobarbituric acid-reactive species formation and myeloperoxidase activity) were carried out to assess the effects of laser irradiation on blood samples. Low-intensity infrared laser exposure increases plasma protein content, induces lipid peroxidation, and increases myeloperoxidase activity in a dose- and frequency-dependent way in blood samples. The low-intensity infrared laser increases plasma protein content and oxidative stress in blood samples, suggesting that laser therapy protocols should take into account fluencies, frequencies, and wavelengths of the laser before beginning treatment.


Assuntos
Proteínas Sanguíneas/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Estresse Oxidativo/efeitos da radiação , Animais , Sangue/efeitos da radiação , Proteínas Sanguíneas/metabolismo , Relação Dose-Resposta à Radiação , Técnicas In Vitro , Masculino , Peroxidase/metabolismo , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
17.
Lasers Surg Med ; 42(6): 481-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20662024

RESUMO

BACKGROUND AND OBJECTIVE: Whereas the biostimulative effect on tissues using low intensity laser therapy for treating many diseases has been described, the photobiological basis and adverse effects are not well understood. The aim of this study, using experimental models, is to observe the combined effect of physical damage (laser) and a chemical agent (hydrogen peroxide) on Escherichia coli cultures and bacterial plasmids. MATERIALS AND METHODS: Survival of E. coli AB1157 (wild type) and BW9091 (xth(-)) cultures were used as an experimental model to assess the effect of agents on DNA, also agarose gel electrophoretic profile of bacterial plasmids for studying single and double strand breaks in DNA exposed to laser irradiation and in DNA pre-exposed to laser and subsequently incubated with hydrogen peroxide. RESULTS: Data indicate low intensity laser: (i) did not alter the survival of E. coli cultures, (ii) pre-exposure had a protective effect against lethal action of hydrogen peroxide on E. coli cultures, and (iii) did not alter the electrophoretic profile and action of hydrogen peroxide on plasmids. This suggests that low intensity therapeutic red laser doses at different emission modes induces sub-lethal effects on E. coli wild type and exonuclease III mutant cultures inducing protective mechanisms against lethal action of hydrogen peroxide. Laser action on bacterial plasmids is related to lesions other than single or double DNA strands breaks. CONCLUSIONS: This study shows a protective effect or DNA repair mechanism induction by pre-exposure to low intensity red laser on the lethal action of oxidant agents and, therefore, laser therapy protocol should consider fluencies, wavelength and tissue conditions before beginning treatment.


Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Terapia a Laser , DNA Bacteriano/efeitos da radiação , Eletroforese em Gel de Ágar , Peróxido de Hidrogênio/efeitos adversos , Oxidantes/efeitos adversos , Plasmídeos/genética
18.
Histol Histopathol ; 23(11): 1367-77, 2008 11.
Artigo em Inglês | MEDLINE | ID: mdl-18785119

RESUMO

The growing and indiscriminate use of high doses of anabolic androgenic steroid (AAS) among youth and athletes has raised serious concerns about its hepatotoxic effects. Herein, the influence of AAS in the nuclear phenotype of hepatocytes was investigated in sedentary and trained mice heterozygous for the human CETP (cholesteryl ester transfer protein) transgene and for LDL-receptor null allele (CETP+/-LDLr+/-) by image analysis. Five groups were assayed comprising treadmill exercised (Ex) and sedentary (Sed) mice, administered mesterolone (AAS) or gum arabic (GA) and a sedentary blank control: G1(SedAAS), G2(SedGA), G3(ExAAS), G4(ExGA), and G5(SedBL). To assess nuclear phenotypes, the state of chromatin supraorganization, DNA content and fragmentation (TUNEL assay), area and perimeter of hepatocytes were determined in Feulgen-stained liver imprints. In addition, the activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) hepatic transaminases were measured. SedAAS-G1 showed the lowest chromatin condensation and highest Feulgen-DNA content, polyploid nuclei frequency, nuclear area and perimeter, suggesting gene activation. Contrarily, ExAAS-G3 showed a highest chromatin condensation, and a significant decrease of Feulgen-DNA content and decreased frequency of polyploid nuclei, which suggest gene silencing. Image analysis of the nuclear phenotype offered a coherent descriptive picture of the changing patterns of chromatin organization, which were shown to be congruent with the levels of Feulgen-DNA content, geometric nuclear parameters and hepatocyte activity. In this study, the image analysis permitted the monitoring of the nuclear response to mesterolone and physical exercise action in liver cells, the molecular mechanism of which is in prospect.


Assuntos
Anabolizantes/toxicidade , Androgênios/toxicidade , Núcleo Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Mesterolona/toxicidade , Esforço Físico , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Antígenos CD13/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Corantes , Fragmentação do DNA , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Poliploidia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Corantes de Rosanilina , Processamento de Sinais Assistido por Computador , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA