Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004584

RESUMO

Encapsulation of Doxorubicin (Dox), a potent cytotoxic agent and immunogenic cell death inducer, in pegylated (Stealth) liposomes, is well known to have major pharmacologic advantages over treatment with free Dox. Reformulation of alendronate (Ald), a potent amino-bisphosphonate, by encapsulation in pegylated liposomes, results in significant immune modulatory effects through interaction with tumor-associated macrophages and activation of a subset of gamma-delta T lymphocytes. We present here recent findings of our research work with a formulation of Dox and Ald co-encapsulated in pegylated liposomes (PLAD) and discuss its pharmacological properties vis-à-vis free Dox and the current clinical formulation of pegylated liposomal Dox. PLAD is a robust formulation with high and reproducible remote loading of Dox and high stability in plasma. Results of biodistribution studies, imaging with radionuclide-labeled liposomes, and therapeutic studies as a single agent and in combination with immune checkpoint inhibitors or gamma-delta T lymphocytes suggest that PLAD is a unique product with distinct tumor microenvironmental interactions and distinct pharmacologic properties when compared with free Dox and the clinical formulation of pegylated liposomal Dox. These results underscore the potential added value of PLAD for chemo-immunotherapy of cancer and the relevance of the co-encapsulation approach in nanomedicine.

2.
ACS Nano ; 16(4): 5246-5257, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35293714

RESUMO

Throughout the female menstrual cycle, physiological changes occur that affect the biodistribution of nanoparticles within the reproductive system. We demonstrate a 2-fold increase in nanoparticle accumulation in murine ovaries and uterus during ovulation, compared to the nonovulatory stage, following intravenous administration. This biodistribution pattern had positive or negative effects when drug-loaded nanoparticles, sized 100 nm or smaller, were used to treat different cancers. For example, treating ovarian cancer with nanomedicines during mouse ovulation resulted in higher drug accumulation in the ovaries, improving therapeutic efficacy. Conversely, treating breast cancer during ovulation, led to reduced therapeutic efficacy, due to enhanced nanoparticle accumulation in the reproductive system rather than at the tumor site. Moreover, chemotherapeutic nanoparticles administered during ovulation increased ovarian toxicity and decreased fertility compared to the free drug. The menstrual cycle should be accounted for when designing and implementing nanomedicines for females.


Assuntos
Nanopartículas , Neoplasias , Feminino , Camundongos , Animais , Distribuição Tecidual , Fertilidade , Ovulação , Genitália Feminina
3.
Biomedicines ; 9(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915871

RESUMO

Hexadentate tris(3,4-hydroxypyridinone) ligands (THP) complex Fe3+ at very low iron concentrations and their high affinities for oxophilic trivalent metal ions have led to their development for new applications as bifunctional chelators for the radiometal gallium-68 (68Ga). THP-peptide bioconjugates rapidly and quantitatively complex 68Ga at room temperature, neutral pH, and micromolar ligand concentrations, making them amenable to kit-based radiosynthesis of 68Ga PET radiopharmaceuticals. With the aim to produce an N-hydroxysuccinimide-(NHS)-THP reagent for kit-based 68Ga-labeling and PET imaging, THP-derivatives were designed and synthesized to exploit the advantages of NHS chemistry for coupling with peptides, proteins, and antibodies. The more stable five-carbon atoms linker product was selected for a proof-of-concept conjugation and radiolabeling study with an anti-programmed death ligand 1 (PD-L1) camelid single domain antibody (sdAb) under mild conditions and further evaluated for site-specific amide bond formation with a synthesized glucagon-like peptide-1 (GLP-1) targeting peptide using solid-phase synthesis. The obtained THP-GLP-1 conjugate was tested for its 68Ga chelating ability, demonstrating to be a promising candidate for the detection and monitoring of GLP-1 aberrant malignancies. The obtained sdAb-THP conjugate was radiolabeled with 68Ga under mild conditions, providing sufficient labeling yields after 5 min, demonstrating that the novel NHS-THP bifunctional chelator can be widely used to easily conjugate the THP moiety to different targeting molecules (e.g., antibodies, anticalins, or peptides) under mild conditions, paving the way to the synthesis of different imaging probes with all the advantages of THP radiochemistry.

4.
Small ; 17(14): e2005241, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734595

RESUMO

Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Compostos Férricos , Humanos , Hipertermia , Campos Magnéticos , Magnetismo
5.
Cell Rep Med ; 2(12): 100473, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028614

RESUMO

Despite its role in cancer surveillance, adoptive immunotherapy using γδ T cells has achieved limited efficacy. To enhance trafficking to bone marrow, circulating Vγ9Vδ2 T cells are expanded in serum-free medium containing TGF-ß1 and IL-2 (γδ[T2] cells) or medium containing IL-2 alone (γδ[2] cells, as the control). Unexpectedly, the yield and viability of γδ[T2] cells are also increased by TGF-ß1, when compared to γδ[2] controls. γδ[T2] cells are less differentiated and yet display increased cytolytic activity, cytokine release, and antitumor activity in several leukemic and solid tumor models. Efficacy is further enhanced by cancer cell sensitization using aminobisphosphonates or Ara-C. A number of contributory effects of TGF-ß are described, including prostaglandin E2 receptor downmodulation, TGF-ß insensitivity, and upregulated integrin activity. Biological relevance is supported by the identification of a favorable γδ[T2] signature in acute myeloid leukemia (AML). Given their enhanced therapeutic activity and compatibility with allogeneic use, γδ[T2] cells warrant evaluation in cancer immunotherapy.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Meios de Cultura Livres de Soro/farmacologia , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Ativação Linfocitária , Camundongos SCID , Prognóstico
6.
Mol Ther ; 28(10): 2271-2285, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645298

RESUMO

Chimeric antigen receptor T cell therapy (CAR-T) has been rolled out as a new treatment for hematological malignancies. For solid tumor treatment, CAR-T has been disappointing so far. Challenges include the quantification of CAR-T trafficking, expansion and retention in tumors, activity at target sites, toxicities, and long-term CAR-T survival. Non-invasive serial in vivo imaging of CAR-T using reporter genes can address several of these challenges. For clinical use, a non-immunogenic reporter that is detectable with exquisite sensitivity by positron emission tomography (PET) using a clinically available non-toxic radiotracer would be beneficial. Here, we employed the human sodium iodide symporter to non-invasively quantify tumor retention of pan-ErbB family targeted CAR-T by PET. We generated and characterized traceable CAR T cells and examined potential negative effects of radionuclide reporter use. We applied our platform to two different triple-negative breast cancer (TNBC) models and unexpectedly observed pronounced differences in CAR-T tumor retention by PET/CT (computed tomography) and confirmed data ex vivo. CAR-T tumor retention inversely correlated with immune checkpoint expression in the TNBC models. Our platform enables highly sensitive non-invasive PET tracking of CAR-T thereby addressing a fundamental unmet need in CAR-T development and offering to provide missing information needed for future clinical CAR-T imaging.


Assuntos
Imunoterapia Adotiva , Tomografia por Emissão de Pósitrons , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/terapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imagem Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Adv Drug Deliv Rev ; 158: 140-157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32526450

RESUMO

Nanoparticles can provide effective control of the release rate and tissue distribution of their drug payload, leading to major pharmacokinetic and pharmacodynamic changes vis-à-vis the conventional administration of free drugs. In the last two decades, we have witnessed major progress in the synthesis and characterization of engineered nanoparticles for imaging and treatment of cancers, resulting in the approval for clinical use of several products and in new and promising approaches. Despite these advances, clinical applications of nanoparticle-based therapeutic and imaging agents remain limited due to biological, immunological, and translational barriers. There is a need to make high impact advances toward translation. In this review, we address biological, toxicological, immunological, and translational aspects of nanomedicine and discuss approaches to move the field forward productively. Overcoming these barriers may dramatically improve the development potential and role of nanomedicines in the oncology field and help meet the high expectations.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Antineoplásicos/imunologia , Antineoplásicos/toxicidade , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Lipossomos/imunologia , Lipossomos/farmacocinética , Distribuição Tecidual , Pesquisa Translacional Biomédica/métodos
8.
Nanotheranostics ; 3(3): 255-265, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263657

RESUMO

Sentinel lymph node biopsy (SLNB) is commonly performed in cancers that metastasise via the lymphatic system. It involves excision and histology of sentinel lymph nodes (SLNs) and presents two main challenges: (i) sensitive whole-body localisation of SLNs, and (ii) lack of pre-operative knowledge of their metastatic status, resulting in a high number (>70%) of healthy SLN excisions. To improve SLNB, whole-body imaging could improve detection and potentially prevent unnecessary surgery by identifying healthy and metastatic SLNs. In this context, radiolabelled SPIOs and PET-MRI could find applications to locate SLNs with high sensitivity at the whole-body level (using PET) and guide high-resolution MRI to evaluate their metastatic status. Here we evaluate this approach by synthesising a GMP-compatible 68Ga-SPIO (68Ga-Sienna+) followed by PET-MR imaging and histology studies in a metastatic breast cancer mouse model. Methods. A clinically approved SPIO for SLN localisation (Sienna+) was radiolabelled with 68Ga without a chelator. Radiochemical stability was tested in human serum. In vitro cell uptake was compared between 3E.Δ.NT breast cancer cells, expressing the hNIS reporter gene, and macrophage cell lines (J774A.1; RAW264.7.GFP). NSG-mice were inoculated with 3E.Δ.NT cells. Left axillary SLN metastasis was monitored by hNIS/SPECT-CT and compared to the healthy right axillary SLN. 68Ga-Sienna+ was injected into front paws and followed by PET-MRI. Imaging results were confirmed by histology. Results.68Ga-Sienna+ was produced in high radiochemical purity (>93%) without the need for purification and was stable in vitro. In vitro uptake of 68Ga-Sienna+ in macrophage cells (J774A.1) was significantly higher (12 ± 1%) than in cancer cells (2.0 ± 0.1%; P < 0.001). SPECT-CT confirmed metastasis in the left axillary SLNs of tumour mice. In PET, significantly higher 68Ga-Sienna+ uptake was measured in healthy axillary SLNs (2.2 ± 0.9 %ID/mL), than in metastatic SLNs (1.1 ± 0.2 %ID/mL; P = 0.006). In MRI, 68Ga-Sienna+ uptake in healthy SLNs was observed by decreased MR signal in T2/T2*-weighted sequences, whereas fully metastatic SLNs appeared unchanged. Conclusion.68Ga-Sienna+ in combination with PET-MRI can locate and distinguish healthy from metastatic SLNs and could be a useful preoperative imaging tool to guide SLN biopsy and prevent unnecessary excisions.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Radioisótopos de Gálio/química , Metástase Linfática/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Biópsia de Linfonodo Sentinela , Animais , Neoplasias da Mama/sangue , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Radioisótopos de Gálio/sangue , Humanos , Hidrodinâmica , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Camundongos , Tamanho da Partícula , Ratos , Eletricidade Estática
9.
Dalton Trans ; 47(28): 9283-9293, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29796500

RESUMO

The ionophore 8-hydroxyquinoline (oxine) has been used to radiolabel cells and liposomal medicines with 111In and, more recently, 89Zr, for medical nuclear imaging applications. Oxine has also shown promising ionophore activity for the positron-emitting radionuclide 52Mn that should allow imaging of labelled cells and nanomedicines for long periods of time (>14 days). However, to date, the radiometal complex formed and its full labelling capabilities have not been fully characterised. Here, we provide supporting evidence of the formation of [52Mn]Mn(oxinate)2 as the metastable complex responsible for its ionophore activity. The cell labelling properties of [52Mn]Mn(oxinate)2 were investigated with various cell lines. The liposomal nanomedicine, DOXIL® (Caelyx) was also labelled with [52Mn]Mn(oxinate)2 and imaged in vivo using PET imaging. [52Mn]Mn(oxinate)2 was able to label various cell lines with moderate efficiency (15-53%), however low cellular retention of 52Mn (21-25% after 24 h) was observed which was shown not to be due to cell death. PET imaging of [52Mn]Mn-DOXIL at 1 h and 24 h post-injection showed the expected pharmacokinetics and biodistribution of this stealth liposome, but at 72 h post-injection showed a profile matching that of free 52Mn, consistent with drug release. We conclude that oxine is an effective ionophore for 52Mn, but high cellular efflux of the isotope limits its use for prolonged cell tracking. [52Mn]Mn(oxinate)2 is effective for labelling and tracking DOXIL in vivo. The release of free radionuclide after liposome extravasation could provide a non-invasive method to monitor drug release in vivo.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Ionóforos/administração & dosagem , Manganês , Oxiquinolina/administração & dosagem , Radioisótopos , Animais , Antibióticos Antineoplásicos/farmacocinética , Plaquetas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Feminino , Células HEK293 , Humanos , Linfócitos Intraepiteliais , Ionóforos/química , Ionóforos/farmacocinética , Marcação por Isótopo , Lipossomos , Camundongos , Nanomedicina , Oxiquinolina/química , Oxiquinolina/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Tomografia por Emissão de Pósitrons
10.
ACS Appl Mater Interfaces ; 8(7): 4887-93, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26824334

RESUMO

The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.


Assuntos
Nanoestruturas/química , Neoplasias/diagnóstico por imagem , Proteínas/química , Pontos Quânticos/química , Rastreamento de Células/métodos , Humanos , Ligantes , Água/química
11.
ACS Nano ; 7(1): 500-12, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23194247

RESUMO

The efficient delivery of nanomaterials to specific targets for in vivo biomedical imaging is hindered by rapid sequestration by the reticuloendothelial system (RES) and consequent short circulation times. To overcome these two problems, we have prepared a new stealth PEG polymer conjugate containing a terminal 1,1-bisphosphonate (BP) group for strong and stable binding to the surface of ultrasmall-superparamagnetic oxide nanomaterials (USPIOs). This polymer, PEG(5)-BP, can be used to exchange the hydrophobic surfactants commonly used in the synthesis of USPIOs very efficiently and at room temperature using a simple method in 1 h. The resulting nanoparticles, PEG(5)-BP-USPIOs are stable in water or saline for at least 7 months and display a near-zero ζ-potential at neutral pH. The longitudinal (r(1)) and transverse (r(2)) relaxivities were measured at a clinically relevant magnetic field (3 T), revealing a high r(1) of 9.5 mM(-1) s(-1) and low r(2)/r(1) ratio of 2.97, making these USPIOs attractive as T1-weighted MRI contrast agents at high magnetic fields. The strong T1-effect was demonstrated in vivo, revealing that PEG(5)-BP-USPIOs remain in the bloodstream and enhance its signal 6-fold, allowing the visualization of blood vessels and vascular organs with high spatial definition. Furthermore, the optimal relaxivity properties allow us to inject a dose 4 times lower than with other USPIOs. PEG(5)-BP-USPIOs can also be labeled using a radiolabeled-BP for visualization with single photon emission computed tomography (SPECT), and thus affording dual-modality contrast. The SPECT studies confirmed low RES uptake and long blood circulation times (t(1/2) = 2.97 h). These results demonstrate the potential of PEG(5)-BP-USPIOs for the development of targeted multimodal imaging agents for molecular imaging.


Assuntos
Angiografia/métodos , Dextranos , Difosfonatos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Nanocápsulas , Polietilenoglicóis/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Meios de Contraste/síntese química , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/química , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA