Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Drug Deliv ; 17(8): 694-702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32621717

RESUMO

BACKGROUND: Leishmaniasis is a neglected tropical disease caused by protozoa of the genus Leishmania. Current treatments are restricted to a small number of drugs that display both severe side effects and a potential for parasites to develop resistance. A new N-(3,4-methylenedioxyphenyl)-N'- (2-phenethyl) thiourea compound (thiourea 1) has shown promising in vitro activity against Leishmania amazonensis with an IC50 of 54.14 µM for promastigotes and an IC50 of 70 µM for amastigotes. OBJECTIVE: To develop a formulation of thiourea 1 as an oral treatment for leishmaniasis, it was incorporated into Nanoparticles (NPs), a proven approach to provide long-acting drug delivery systems. METHODS: Poly (D,L-Lactic-co-Glycolic Acid) (PLGA) polymeric NPs containing thiourea 1 were obtained through a nanoprecipitation methodology associated with solvent evaporation. The NPs containing thiourea 1 were characterized for Encapsulation Efficiency (EE%), reaction yield (% w/w), surface charge, particle size and morphology by Transmission Electron Microscopy (TEM). RESULTS: NPs with thiourea 1 showed an improved in vitro leishmanicidal activity with a reduction in its cytotoxicity against macrophages (CC50>100 µg/mL) while preserving its IC50 against intracellular amastigotes (1.46 ± 0.09 µg/mL). This represents a parasite Selectivity Index (SI) of 68.49, which is a marked advancement from the reference drug pentamidine (SI = 30.14). CONCLUSION: The results suggest that the incorporation into NPs potentiated the therapeutic effect of thiourea 1, most likely by improving the selective delivery of the drug to the phagocytic cells that are targeted for infection by L. amazonensis. This work reinforces the importance of nanotechnology in the acquisition of new therapeutic alternatives for oral treatments.


Assuntos
Antiprotozoários/administração & dosagem , Portadores de Fármacos/química , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Tioureia/administração & dosagem , Animais , Antiprotozoários/farmacocinética , Antiprotozoários/toxicidade , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Humanos , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Camundongos , Nanopartículas/química , Testes de Sensibilidade Parasitária , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Cultura Primária de Células , Tioureia/análogos & derivados , Tioureia/farmacocinética , Tioureia/toxicidade , Testes de Toxicidade Aguda
2.
Regul Toxicol Pharmacol ; 91: 1-8, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28970106

RESUMO

The application of in silico methods is increasing on toxicological risk prediction for human and environmental health. This work aimed to evaluate the performance of three in silico freeware models (OSIRIS v.2.0, LAZAR, and Toxtree) on the prediction of carcinogenicity and mutagenicity of thirty-eight volatile organic compounds (VOC) related to chemical risk assessment for occupational exposure. Theoretical data were compared with assessments available in international databases. Confusion matrices and ROC curves were used to evaluate the sensitivity, specificity, and accuracy of each model. All three models (OSIRIS, LAZAR and Toxtree) were able to identify VOC with a potential carcinogenicity or mutagenicity risk for humans, however presenting differences concerning the specificity, sensitivity, and accuracy. The best predictive performances were found for OSIRIS and LAZAR for carcinogenicity and OSIRIS for mutagenicity, as these softwares presented a combination of negative predictive power and lower risk of false positives (high specificity) for those endpoints. The heterogeneity of results found with different softwares reinforce the importance of using a combination of in silico models to occupational toxicological risk assessment.


Assuntos
Carcinógenos/toxicidade , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Medição de Risco/métodos , Compostos Orgânicos Voláteis/toxicidade , Simulação por Computador , Bases de Dados Factuais , Humanos , Modelos Biológicos , Mutagênese/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Sensibilidade e Especificidade , Software
3.
Molecules ; 20(5): 8072-93, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25951004

RESUMO

Tuberculosis (TB) remains a serious public health problem aggravated by the emergence of M. tuberculosis (Mtb) strains resistant to multiple drugs (MDR). Delay in TB treatment, common in the MDR-TB cases, can lead to deleterious life-threatening inflammation in susceptible hyper-reactive individuals, encouraging the discovery of new anti-Mtb drugs and the use of adjunctive therapy based on anti-inflammatory interventions. In this study, a series of forty synthetic chalcones was evaluated in vitro for their anti-inflammatory and antimycobacterial properties and in silico for pharmacokinetic parameters. Seven compounds strongly inhibited NO and PGE2 production by LPS-stimulated macrophages through the specific inhibition of iNOS and COX-2 expression, respectively, with compounds 4 and 5 standing out in this respect. Four of the seven most active compounds were able to inhibit production of TNF-α and IL-1ß. Chalcones that were not toxic to cultured macrophages were tested for antimycobacterial activity. Eight compounds were able to inhibit growth of the M. bovis BCG and Mtb H37Rv strains in bacterial cultures and in infected macrophages. Four of them, including compounds 4 and 5, were active against a hypervirulent clinical Mtb isolate as well. In silico analysis of ADMET properties showed that the evaluated chalcones displayed satisfactory pharmacokinetic parameters. In conclusion, the obtained data demonstrate that at least two of the studied chalcones, compounds 4 and 5, are promising antimycobacterial and anti-inflammatory agents, especially focusing on an anti-tuberculosis dual treatment approach.


Assuntos
Anti-Inflamatórios/farmacologia , Antituberculosos/farmacologia , Chalconas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxidos de Nitrogênio/metabolismo , Tuberculose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA