Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AIMS Neurosci ; 10(4): 433-446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188001

RESUMO

Neuropathic pain (NP) is caused by a lesion that triggers pain chronification and central sensitization and it can develop in a different manner, dependent of age. Recent studies have demonstrated the efficacy of transcranial direct current stimulation (tDCS) for treating NP. Then, we aimed to investigate the effects of tDCS and BDNF levels in neuropathic pain rats in development, with 30 days old in the beginning of experiments. Eight-five male Wistar rats were subjected to chronic constriction injury. After establishment of NP, bimodal tDCS was applied to the rats for eight consecutive days, for 20 minutes each session. Subsequently, nociceptive behavior was assessed at baseline, 14 days after surgery, 1 day and 7 days after the end of tDCS. The rats were sacrificed 8 days after the last session of tDCS. An increase in the nociceptive threshold was observed in rats in development 1 day after the end of tDCS (short-term effect), but this effect was not maintained 7 days after the end of tDCS (long-term effect). Furthermore, brain derived neurotrophic factor (BDNF) levels were analyzed in the frontal cortex, spinal cord and serum using ELISA assays. The neuropathic pain model showed an effect of BDNF in the spinal cord of rats in development. There were no effects of BNDF levels of pain or tDCS in the frontal cortex or serum. In conclusion, tDCS is an effective technique to relieve nociceptive behavior at a short-term effect in neuropathic pain rats in development, and BDNF levels were not altered at long-term effect.

2.
Metab Brain Dis ; 36(3): 471-481, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33411218

RESUMO

Methylglyoxal (MG) is an endogenously produced toxicant that induces mitochondrial dysfunction leading to impaired redox biology homeostasis, bioenergetics collapse, and cell death in mammalian cells. However, MG toxicity is particularly relevant to neurons and glia given their chemical and metabolic characteristics. Here, we have investigated whether a pretreatment with carnosic acid (CA) would be able to promote mitochondrial protection in human neuroblastoma SH-SY5Y cells exposed to MG. We found that a pretreatment with CA at 1 µM for 12 h prevented the MG-induced lipid peroxidation and protein carbonylation and nitration in the membranes of mitochondria obtained from the SH-SY5Y cells. CA also prevented the MG-elicited Complexes I and V dysfunction, adenosine triphosphate (ATP) levels decline, and loss of mitochondrial membrane potential (MMP). Moreover, CA also reduced the mitochondrial production of the radical anion superoxide (O2-•) in the MG-challenged cells. We found that CA upregulated the synthesis of glutathione (GSH) by increasing the activity of the γ-glutamylcysteine ligase (γ-GCL). Inhibition of the GSH synthesis by buthionine sulfoximine (BSO) abolished the CA-induced mitochondrial protection. Besides, inhibition of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, as well as silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), suppressed the CA-stimulated protection and the synthesis of GSH. Thus, CA promoted mitochondrial protection by a PI3K/Akt/Nrf2/γ-GCL/GSH axis in MG-treated SH-SY5Y cells.


Assuntos
Abietanos/farmacologia , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo
3.
Neurotox Res ; 39(2): 292-304, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32930996

RESUMO

Mitochondrial dysfunction is part of the mechanism of several human diseases. This negative circumstance may be induced by certain toxicants, as methylglyoxal (MG). MG is a reactive dicarbonyl presenting both endogenous and exogenous sources and is also able to induce protein cross-linking and glycation. Emodin (EM; 1,3,8-trihydroxy-6-methylanthracene-9,10-dione; C15H10O5) is a cytoprotective agent. Nonetheless, it was not previously demonstrated whether EM would be able to promote mitochondrial protection in cells challenged with MG. Therefore, we investigated here whether and how EM would prevent the MG-induced mitochondrial collapse in the human neuroblastoma SH-SY5Y cells. We found that a pretreatment (for 4 h) with EM at 40 µM prevented the MG-induced mitochondrial dysfunction (i.e., decreased activity of the complexes I and V, reduced adenosine triphosphate levels, and loss of mitochondrial membrane potential) in the SH-SY5Y cells. EM also prevented the redox impairment induced by MG in mitochondrial membranes. Inhibiting the adenosine monophosphate-activated protein kinase (AMPK) or silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2), transcription factor abolished the EM-induced protection. Inhibition of heme oxygenase-1 (HO-1) also blocked the EM-induced mitochondrial protection. Therefore, EM protected the mitochondria by a mechanism dependent on the AMPK/Nrf2/HO-1 signaling pathway in MG-challenged SH-SY5Y cells.


Assuntos
Emodina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Aldeído Pirúvico/toxicidade , Transdução de Sinais/efeitos dos fármacos , Adenilato Quinase/metabolismo , Linhagem Celular Tumoral , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo
4.
Neurochem Res ; 46(3): 482-493, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33219897

RESUMO

Emodin (EM; 1,3,8-trihydroxy-6-methylanthracene-9,10-dione; C15H10O5) is an anthraquinone and exerts cytoprotective effects, as observed in both in vitro and in vivo experimental models. Mitochondrial dysfunction induced by reactive species plays a central role in the onset and progression of different human diseases. Thus, we have tested here whether a pretreatment (for 4 h) with EM (at 40 µM) would be able to promote mitochondrial protection in the human neuroblastoma SH-SY5Y cells exposed to the pro-oxidant agent hydrogen peroxide (H2O2). We found that the pretreatment with EM suppressed the effects of H2O2 on the activity of the mitochondrial complexes I and V, as well as on the production of adenosine triphosphate (ATP) and on the mitochondrial membrane potential (MMP). EM also prevented the H2O2-induced collapse in the tricarboxylic acid cycle (TCA) function. An anti-inflammatory role for EM was also observed in this experimental model, since this anthraquinone decreased the secretion of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) by the H2O2-challenged cells. Inhibition of the adenosine monophosphate-activated protein kinase (AMPK) or silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) abolished the protection induced by EM in the H2O2-treated cells. Therefore, EM prevented the H2O2-induced mitochondrial dysfunction and pro-inflammatory state in the SH-SY5Y cells by an AMPK/Nrf2-dependent manner.


Assuntos
Anti-Inflamatórios/farmacologia , Emodina/farmacologia , Peróxido de Hidrogênio/toxicidade , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos
5.
Neurotox Res ; 37(1): 100-110, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31494842

RESUMO

The coffee diterpene kahweol (KW; C20H26O3) is a cytoprotective agent exhibiting potent antioxidant actions, as demonstrated in several experimental models. In spite of the efforts to elucidate exactly how KW promotes cytoprotection, it was not previously examined whether KW would be able to protect mitochondria of human cells undergoing redox stress. In the present work, we have treated the human neuroblastoma SH-SY5Y cell line with KW at 0.1-10 µM for 12 h prior to a challenge with methylglyoxal (MG), a reactive dicarbonyl that impairs mitochondrial function. We have found that KW at 10 µM suppressed the loss of mitochondrial membrane potential (MMP) and the bioenergetics decline (including decreased activity of the mitochondrial complexes I and V and reduced production of adenosine triphosphate, ATP) in the MG-treated SH-SY5Y cells. KW also prevented the MG-elicited generation of reactive oxygen and nitrogen species (ROS and RNS, respectively) in the SH-SY5Y cells. In this regard, KW exerted an antioxidant effect on the membranes of mitochondria obtained from the MG-treated cells. The mitochondria-related effects induced by KW were blocked by inhibition of the phosphoinositide 3-kinase (PI3K)/Akt or of the p38 mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, silencing of the transcription factor nuclear factor E2-related factor 2 (Nrf2) suppressed the mitochondrial protection promoted by KW in the MG-challenged cells. Therefore, KW protected mitochondria by a mechanism associated with the PI3K/Akt and p38 MAPK/Nrf2 signaling pathways.


Assuntos
Citoproteção , Diterpenos/farmacologia , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Diterpenos/antagonistas & inibidores , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/deficiência , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Doenças Mitocondriais/induzido quimicamente , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Aldeído Pirúvico , Espécies Reativas de Nitrogênio/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Toxicol In Vitro ; 61: 104601, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31306736

RESUMO

The oxidative phosphorylation (OXPHOS) system located in the mitochondria is the main source of adenosine triphosphate (ATP) in mammals. The mitochondria are also the main site of reactive oxygen species (ROS) production in those cells. Disruption of the mitochondrial redox biology has been seen in the onset and progression of neurodegenerative diseases. In this regard, we have tested here whether kahweol (KW; C20H26O3), a diterpene present in coffee, would be able to promote mitochondrial protection in the human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide (H2O2). A pretreatment (for 12 h) with KW (at 10 µM) decreased the impact of H2O2 (at 300 µM) on the levels of oxidative stress markers in the mitochondrial membranes, as well as reduced the production of ROS by the organelles. KW pretreatment also suppressed the effects of H2O2 on the activity of components of the OXPHOS. The KW-induced mitochondria-related effects were blocked by inhibition of the phosphoinositide 3-kinase/Akt (PI3K/Akt) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and inhibition of the heme oxygenase-1 (HO-1) enzyme abrogated the KW-induced protective effects on the mitochondria. Therefore, KW promoted mitochondrial protection by the PI3K/Akt and p38 MAPK/Nrf2/HO-1 axis in H2O2-challenged SH-SY5Y cells.


Assuntos
Diterpenos/farmacologia , Peróxido de Hidrogênio/toxicidade , Mitocôndrias/efeitos dos fármacos , Neoplasias Encefálicas , Linhagem Celular Tumoral , Café , Heme Oxigenase-1/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neuroblastoma , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Neurotox Res ; 36(3): 491-502, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31359290

RESUMO

Methylglyoxal (MG) is a dicarbonyl molecule exhibiting high reactivity and is a major responsible for glycation in human cells. Accumulation of MG is seen in certain diseases, including metabolic disturbances and neurodegeneration. Among other effects, MG promotes mitochondrial dysfunction, leading to bioenergetic decline and redox impairment in virtually any nucleated human cells. The detoxification of MG is dependent on the availability of reduced glutathione (GSH), a major antioxidant that is also utilized in phase II detoxification reactions. The synthesis of GSH is mainly controlled by the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The activation of Nrf2 is stimulated by several reactive compounds, including natural molecules produced by plants. Tanshinone I (T-I) is obtained from Salvia miltiorrhiza Bunge and exerts potent cytoprotective actions in different cell types. Thus, we have investigated here whether and how T-I would be able to protect mitochondria of the human neuroblastoma SH-SY5Y cell line exposed to MG. The cells were pretreated with T-I at 2.5 µM for 2 h before the challenge with MG at 500 µM. T-I significantly attenuated the MG-induced loss of cell viability, bioenergetic decline, and redox impairment in SH-SY5Y cells. The inhibition of the GSH synthesis by buthionine sulfoximine (BSO) at 100 µM suppressed the mitochondrial protection promoted by T-I. The silencing of Nrf2 by small interfering RNA (siRNA) abrogated the synthesis of GSH and the mitochondrial protection stimulated by T-I in SH-SY5Y cells. Therefore, T-I induced mitochondrial protection by a mechanism involving the Nrf2/GSH axis in MG-challenged SH-SY5Y cells.


Assuntos
Abietanos/farmacologia , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Aldeído Pirúvico/farmacologia , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
8.
Mol Neurobiol ; 55(1): 890-897, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28083817

RESUMO

Carnosic acid (CA) is a phenolic diterpene obtained from Rosmarinus officinalis L. and has demonstrated cytoprotective properties in several experimental models. CA exerts antioxidant effects by upregulating the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which controls the expression of antioxidant and phase II detoxification enzymes. Heme oxygenase-1 (HO-1) expression is modulated by Nrf2 and has been demonstrated as part of the mechanism underlying the CA-induced cytoprotection. Nonetheless, it remains to be studied whether and how HO-1 would mediate CA-elicited anti-inflammatory effects. Therefore, we have investigated here whether and how CA would prevent paraquat (PQ)-induced inflammation-related alterations in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were pretreated for 12 h with CA at 1 µM before exposure to PQ for further 24 h. CA suppressed the PQ-induced alterations on the levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) through a mechanism involving the activation of the Nrf2/HO-1 axis. Furthermore, we observed a crosstalk between the Nrf2/HO-1 signaling pathway and the activation of the nuclear factor-κB (NF-κB) transcription factor, since administration of ZnPP IX (specific inhibitor of HO-1) or Nrf2 knockdown using small interfering RNA (siRNA) abolished the anti-inflammatory effects induced by CA. Moreover, administration of SN50 (specific inhibitor of NF-κB) inhibited the PQ-induced inflammation-related effects in SH-SY5Y cells. Therefore, CA exerted anti-inflammatory effects in SH-SY5Y cells through an Nrf2/HO-1 axis-dependent manner associated with downregulation of NF-κB.


Assuntos
Abietanos/farmacologia , Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Paraquat/toxicidade , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Óxido Nítrico/metabolismo
9.
Mol Neurobiol ; 54(10): 7858-7868, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27848206

RESUMO

Tanshinone I (T-I; C18H12O3) is a cytoprotective molecule. T-I has been viewed as an antioxidant and anti-inflammatory agent exerting neuroprotective actions in several experimental models. Nonetheless, the mechanisms underlying the beneficial effects of T-I in mammalian cells are not completely understood yet. Mitochondrial dysfunction has been associated with several neurodegenerative diseases which remain uncured. Therefore, there is increasing interest in compounds that may be used in the prevention or treatment of those pathologies. Since T-I presents an antioxidant capacity, we investigated here whether and how this compound would prevent mitochondrial impairment in SH-SY5Y cells exposed to hydrogen peroxide (H2O2), which has been involved in the triggering of deleterious effects in several experimental models mimicking neurodegenerative processes. We found that a pretreatment with T-I at 2.5 µM for 2 h suppressed the pro-oxidant effects of H2O2 on mitochondrial membranes. Furthermore, T-I prevented the H2O2-elicited inhibition of the tricarboxylic acid (TCA) cycle enzymes (aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase) and of the mitochondrial complexes I and V. T-I also abrogated the mitochondrial depolarization and the mitochondrial failure to produce ATP in cells exposed to H2O2. T-I upregulated the levels of reduced glutathione (GSH) in the mitochondria of SH-SY5Y cells. T-I induced mitochondrial protection, at least in part, by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), because silencing of Nrf2 by using small interference RNA (SiRNA) blocked these effects. Therefore, T-I afforded mitochondrial protection (involving both redox and bioenergetics-related aspects) against H2O2 through the activation of Nrf2.


Assuntos
Abietanos/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
BMC Pharmacol Toxicol ; 15: 40, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25052847

RESUMO

BACKGROUND: Central disinhibition is a mechanism involved in the physiopathology of fibromyalgia. Melatonin can improve sleep quality, pain and pain threshold. We hypothesized that treatment with melatonin alone or in combination with amitriptyline would be superior to amitriptyline alone in modifying the endogenous pain-modulating system (PMS) as quantified by conditional pain modulation (CPM), and this change in CPM could be associated with serum brain-derived neurotrophic factor (BDNF). We also tested whether melatonin improves the clinical symptoms of pain, pain threshold and sleep quality. METHODS: Sixty-three females, aged 18 to 65, were randomized to receive bedtime amitriptyline (25 mg) (n = 21), melatonin (10 mg) (n = 21) or melatonin (10 mg) + amitriptyline (25 mg) (n = 21) for a period of six weeks. The descending PMS was assessed with the CPM-TASK. It was assessed the pain score on the Visual Analog Scale (VAS 0-100 mm), the score on Fibromyalgia Impact Questionnaire (FIQ), heat pain threshold (HPT), sleep quality and BDNF serum. Delta values (post- minus pre-treatment) were used to compare the treatment effect. The outcomes variables were collected before, one and six weeks after initiating treatment. RESULTS: Melatonin alone or in combination with amitriptyline reduced significantly pain on the VAS compared with amitriptyline alone (P < 0.01). The delta values on the VAS scores were-12.85 (19.93),-17.37 (18.69) and-20.93 (12.23) in the amitriptyline, melatonin and melatonin+amitriptyline groups, respectively. Melatonin alone and in combination increased the inhibitory PMS as assessed by the Numerical Pain Scale [NPS(0-10)] reduction during the CPM-TASK:-2.4 (2.04) melatonin + amitriptyline,-2.65 (1.68) melatonin, and-1.04 (2.06) amitriptyline, (P < 0.05). Melatonin + amitriptyline treated displayed better results than melatonin and amitriptyline alone in terms of FIQ and PPT improvement (P < 0.05, fort both). CONCLUSION: Melatonin increased the inhibitory endogenous pain-modulating system as assessed by the reduction on NPS(0-10) during the CPM-TASK. Melatonin alone or associated with amitriptyline was better than amitriptyline alone in improving pain on the VAS, whereas its association with amitriptyline produced only marginal additional clinical effects on FIQ and PPT. TRIAL REGISTRATION: Current controlled trail is registered at clinical trials.gov upon under number NCT02041455. Registered January 16, 2014.


Assuntos
Analgésicos/uso terapêutico , Fibromialgia/complicações , Melatonina/uso terapêutico , Dor/tratamento farmacológico , Adolescente , Adulto , Amitriptilina/administração & dosagem , Amitriptilina/uso terapêutico , Analgésicos/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Método Duplo-Cego , Feminino , Humanos , Melatonina/administração & dosagem , Pessoa de Meia-Idade , Dor/complicações , Inquéritos e Questionários , Escala Visual Analógica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA