Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 9(16): 5948-5959, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592321

RESUMO

Tumor DNA has been detected in body fluids of cancer patients. Somatic tumor mutations are being used as biomarkers in body fluids to monitor chemotherapy response as a minimally invasive tool. In this study, we evaluated the potential of tracking somatic mutations in free DNA of plasma and urine collected from Wilms tumor (WT) patients for monitoring treatment response. Wilms tumor is a pediatric renal tumor resulting from cell differentiation errors during nephrogenesis. Its mutational repertoire is not completely defined. Thus, for identifying somatic mutations from tumor tissue DNA, we screened matched tumor/leukocyte DNAs using either a panel containing 16 WT-associated genes or whole-exome sequencing (WES). The identified somatic tumor mutations were tracked in urine and plasma DNA collected before, during and after treatment. At least one somatic mutation was identified in five out of six WT tissue samples analyzed. Somatic mutations were detected in body fluids before treatment in all five patients (three patients in urine, three in plasma, and one in both body fluids). In all patients, a decrease of the variant allele fraction of somatic mutations was observed in body fluids during neoadjuvant chemotherapy. Interestingly, the persistence of somatic mutations in body fluids was in accordance with clinical parameters. For one patient who progressed to death, it persisted in high levels in serial body fluid samples during treatment. For three patients without disease progression, somatic mutations were not consistently detected in samples throughout monitoring. For one patient with bilateral disease, a somatic mutation was detected at low levels with no support of clinical manifestation. Our results demonstrated the potential of tracking somatic mutations in urine and plasma DNA as a minimally invasive tool for monitoring WT patients. Additional investigation is needed to check the clinical value of insistent somatic mutations in body fluids.


Assuntos
DNA de Neoplasias/genética , Neoplasias Renais/genética , Mutação , Tumor de Wilms/genética , Alelos , Quimioterapia Adjuvante , Pré-Escolar , DNA de Neoplasias/sangue , DNA de Neoplasias/urina , Feminino , Humanos , Lactente , Neoplasias Renais/sangue , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/urina , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Terapia Neoadjuvante , Sequenciamento do Exoma , Tumor de Wilms/sangue , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/urina
2.
Front Genet ; 9: 161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868112

RESUMO

Pathogenic variants in known breast cancer (BC) predisposing genes explain only about 30% of Hereditary Breast Cancer (HBC) cases, whereas the underlying genetic factors for most families remain unknown. Here, we used whole-exome sequencing (WES) to identify genetic variants associated to HBC in 17 patients of Brazil with familial BC and negative for causal variants in major BC risk genes (BRCA1/2, TP53, and CHEK2 c.1100delC). First, we searched for rare variants in 27 known HBC genes and identified two patients harboring truncating pathogenic variants in ATM and BARD1. For the remaining 15 negative patients, we found a substantial vast number of rare genetic variants. Thus, for selecting the most promising variants we used functional-based variant prioritization, followed by NGS validation, analysis in a control group, cosegregation analysis in one family and comparison with previous WES studies, shrinking our list to 23 novel BC candidate genes, which were evaluated in an independent cohort of 42 high-risk BC patients. Rare and possibly damaging variants were identified in 12 candidate genes in this cohort, including variants in DNA repair genes (ERCC1 and SXL4) and other cancer-related genes (NOTCH2, ERBB2, MST1R, and RAF1). Overall, this is the first WES study applied for identifying novel genes associated to HBC in Brazilian patients, in which we provide a set of putative BC predisposing genes. We also underpin the value of using WES for assessing the complex landscape of HBC susceptibility, especially in less characterized populations.

3.
Nat Commun ; 7: 11256, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27071721

RESUMO

Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes.


Assuntos
Rearranjo Gênico/genética , Redes Reguladoras de Genes , Genoma Fúngico , Neoplasias/genética , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/genética , Elementos Facilitadores Genéticos/genética , Epistasia Genética , Genes Fúngicos , Instabilidade Genômica , Humanos , Mutação/genética
4.
PLoS One ; 9(4): e94147, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24710071

RESUMO

A new method, which allows for the identification and prioritization of predicted cancer genes for future analysis, is presented. This method generates a gene-specific score called the "S-Score" by incorporating data from different types of analysis including mutation screening, methylation status, copy-number variation and expression profiling. The method was applied to the data from The Cancer Genome Atlas and allowed the identification of known and potentially new oncogenes and tumor suppressors associated with different clinical features including shortest term of survival in ovarian cancer patients and hormonal subtypes in breast cancer patients. Furthermore, for the first time a genome-wide search for genes that behave as oncogenes and tumor suppressors in different tumor types was performed. We envisage that the S-score can be used as a standard method for the identification and prioritization of cancer genes for follow-up studies.


Assuntos
Biologia Computacional/métodos , Genes Neoplásicos/genética , Neoplasias/genética , Variações do Número de Cópias de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genômica , Humanos , Metilação , Mutação/genética , Oncogenes/genética
5.
Stem Cells ; 31(12): 2827-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24022994

RESUMO

Hotair is a member of the recently described class of noncoding RNAs called lincRNA (large intergenic noncoding RNA). Various studies suggest that Hotair acts regulating epigenetic states by recruiting chromatin-modifying complexes to specific target sequences that ultimately leads to suppression of several genes. Although Hotair has been associated with metastasis and poor prognosis in different tumor types, a deep characterization of its functions in cancer is still needed. Here, we investigated the role of Hotair in the scenario of epithelial-to-mesenchymal transition (EMT) and in the arising and maintenance of cancer stem cells (CSCs). We found that treatment with TGF-ß1 resulted in increased Hotair expression and triggered the EMT program. Interestingly, ablation of Hotair expression by siRNA prevented the EMT program stimulated by TGF-ß1, and also the colony-forming capacity of colon and breast cancer cells. Furthermore, we observed that the colon CSC subpopulation (CD133(+)/CD44(+)) presents much higher levels of Hotair when compared with the non-stem cell subpopulation. These results indicate that Hotair acts as a key regulator that controls the multiple signaling mechanisms involved in EMT. Altogether, our data suggest that the role of Hotair in tumorigenesis occurs through EMT triggering and stemness acquisition.


Assuntos
Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/fisiologia , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Humanos , Células-Tronco Neoplásicas/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA