Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 13(1): 16821, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798298

RESUMO

Amongst the potential contribution of protein or peptide-display systems to study epitopes with relevant immunological features, the RAD display system stands out as a highly stable scaffold protein that allows the presentation of constrained target peptides. Here, we employed the RAD display system to present peptides derived from the SARS-CoV-2 Spike (S) protein as a tool to detect specific serum antibodies and to generate polyclonal antibodies capable of inhibiting SARS-CoV-2 infectivity in vitro. 44 linear S-derived peptides were genetically fused with the RAD scaffold (RAD-SCoV-epitopes) and screened for antigenicity with sera collected from COVID-19-infected patients. In a second step, selected RAD-SCoV-epitopes were used to immunize mice and generate antibodies. Phenotypic screening showed that some of these antibodies were able to recognize replicating viral particles in VERO CCL-81 and most notably seven of the RAD-SCoV-epitopes were able to induce antibodies that inhibited viral infection. Our findings highlight the RAD display system as an useful platform for the immunological characterization of peptides and a potentially valuable strategy for the design of antigens for peptide-based vaccines, for epitope-specific antibody mapping, and for the development of antibodies for diagnostic and therapeutic purposes.


Assuntos
COVID-19 , Pyrococcus furiosus , Humanos , Animais , Camundongos , Epitopos , Glicoproteína da Espícula de Coronavírus/metabolismo , Pyrococcus furiosus/metabolismo , Anticorpos Antivirais , Proteínas do Envelope Viral , SARS-CoV-2 , Peptídeos/química , Anticorpos Neutralizantes
2.
Pharmaceutics ; 15(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111682

RESUMO

By following simple protein engineering steps, recombinant proteins with promising applications in the field of drug delivery can be assembled in the form of functional materials of increasing complexity, either as nanoparticles or nanoparticle-leaking secretory microparticles. Among the suitable strategies for protein assembly, the use of histidine-rich tags in combination with coordinating divalent cations allows the construction of both categories of material out of pure polypeptide samples. Such molecular crosslinking results in chemically homogeneous protein particles with a defined composition, a fact that offers soft regulatory routes towards clinical applications for nanostructured protein-only drugs or for protein-based drug vehicles. Successes in the fabrication and final performance of these materials are expected, irrespective of the protein source. However, this fact has not yet been fully explored and confirmed. By taking the antigenic RBD domain of the SARS-CoV-2 spike glycoprotein as a model building block, we investigated the production of nanoparticles and secretory microparticles out of the versions of recombinant RBD produced by bacteria (Escherichia coli), insect cells (Sf9), and two different mammalian cell lines (namely HEK 293F and Expi293F). Although both functional nanoparticles and secretory microparticles were effectively generated in all cases, the technological and biological idiosyncrasy of each type of cell factory impacted the biophysical properties of the products. Therefore, the selection of a protein biofabrication platform is not irrelevant but instead is a significant factor in the upstream pipeline of protein assembly into supramolecular, complex, and functional materials.

3.
Front Immunol ; 14: 1071041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006270

RESUMO

Introduction: In the present study we evaluated the features of different recombinant forms of Zika virus (ZIKV) proteins produced in either bacterial (Eschericha coli) or insect cells (Drosophila melanogaster). The ZIKV-envelope glycoprotein (EZIKV) is responsible for virus entry into host cells, is the main target of neutralizing antibodies and has been used as a target antigen either for serological tests or for the development of subunit vaccines. The EZIKV is composed of three structural and functional domains (EDI, EDII, and EDIII), which share extensive sequence conservation with the corresponding counterparts expressed by other flaviviruses, particularly the different dengue virus (DENV) subtypes. Methods: In this study, we carried out a systematic comparison of the antigenicity and immunogenicity of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells. For the antigenicity analysis we collected 88 serum samples from ZIKV-infected participants and 57 serum samples from DENV-infected. For immunogenicity, C57BL/6 mice were immunized with two doses of EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells to evaluate humoral and cellular immune response. In addition, AG129 mice were immunized with EZIKV and then challenge with ZIKV. Results: Testing of samples collected from ZIKV-infected and DENV-infected participants demonstrated that the EZIKV and EDIIIZIKV produced in BL21 cells presented better sensitivity and specificity compared to proteins produced in S2 cells. In vivo analyses were carried out with C57BL/6 mice and the results indicated that, despite similar immunogenicity, antigens produced in S2 cells, particularly EZIKV and EDIIIZIKV, induced higher ZIKV-neutralizing antibody levels in vaccinated mice. In addition, immunization with EZIKV expressed in S2 cells delayed the onset of symptoms and increased survival rates in immunocompromised mice. All recombinant antigens, either produced in bacteria or insect cells, induced antigen-specific CD4+ and CD8+ T cell responses. Conclusion: In conclusion, the present study highlights the differences in antigenicity and immunogenicity of recombinant ZIKV antigens produced in two heterologous protein expression systems.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Zika virus/genética , Proteínas do Envelope Viral/química , Anticorpos Antivirais , Drosophila melanogaster , Escherichia coli/genética , Camundongos Endogâmicos C57BL , Vacinas de Subunidades Antigênicas
4.
Sci Transl Med ; 15(686): eabn3464, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36867683

RESUMO

As mRNA vaccines have proved to be very successful in battling the coronavirus disease 2019 (COVID-19) pandemic, this new modality has attracted widespread interest for the development of potent vaccines against other infectious diseases and cancer. Cervical cancer caused by persistent human papillomavirus (HPV) infection is a major cause of cancer-related deaths in women, and the development of safe and effective therapeutic strategies is urgently needed. In the present study, we compared the performance of three different mRNA vaccine modalities to target tumors associated with HPV-16 infection in mice. We generated lipid nanoparticle (LNP)-encapsulated self-amplifying mRNA as well as unmodified and nucleoside-modified non-replicating mRNA vaccines encoding a chimeric protein derived from the fusion of the HPV-16 E7 oncoprotein and the herpes simplex virus type 1 glycoprotein D (gDE7). We demonstrated that single low-dose immunizations with any of the three gDE7 mRNA vaccines induced activation of E7-specific CD8+ T cells, generated memory T cell responses capable of preventing tumor relapses, and eradicated subcutaneous tumors at different growth stages. In addition, the gDE7 mRNA-LNP vaccines induced potent tumor protection in two different orthotopic mouse tumor models after administration of a single vaccine dose. Last, comparative studies demonstrated that all three gDE7 mRNA-LNP vaccines proved to be superior to gDE7 DNA and gDE7 recombinant protein vaccines. Collectively, we demonstrated the immunogenicity and therapeutic efficacy of three different mRNA vaccines in extensive comparative experiments. Our data support further evaluation of these mRNA vaccines in clinical trials.


Assuntos
Vacinas Anticâncer , Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de DNA , Animais , Feminino , Camundongos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Imunização , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/genética , Proteínas Recombinantes , RNA Mensageiro/genética
5.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992364

RESUMO

Zika virus (ZIKV), a mosquito-borne pathogen, is an emerging arbovirus associated with sporadic symptomatic cases of great medical concern, particularly among pregnant women and newborns affected with neurological disorders. Serological diagnosis of ZIKV infection is still an unmet challenge due to the co-circulation of the dengue virus, which shares extensive sequence conservation of structural proteins leading to the generation of cross-reactive antibodies. In this study, we aimed to obtain tools for the development of improved serological tests for the detection of ZIKV infection. Polyclonal sera (pAb) and a monoclonal antibody (mAb 2F2) against a recombinant form of the ZIKV nonstructural protein 1 (NS1) allowed the identification of linear peptide epitopes of the NS1 protein. Based on these findings, six chemically synthesized peptides were tested both in dot blot and ELISA assays using convalescent sera collected from ZIKV-infected patients. Two of these peptides specifically detected the presence of ZIKV antibodies and proved to be candidates for the detection of ZIKV-infected subjects. The availability of these tools opens perspectives for the development of NS1-based serological tests with enhanced sensitivity regarding other flaviviruses.


Assuntos
Proteínas não Estruturais Virais , Infecção por Zika virus , Feminino , Humanos , Recém-Nascido , Gravidez , Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Peptídeos , Testes Sorológicos , Proteínas não Estruturais Virais/isolamento & purificação , Zika virus
6.
PLoS Pathog ; 18(10): e1010499, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36240261

RESUMO

Severe dengue virus (DENV) infection is characterized by exacerbated inflammatory responses that lead to endothelial dysfunction and plasma leakage. We have recently demonstrated that Toll-like receptor 2 (TLR2) on blood monocytes senses DENV infection leading to endothelial activation. Here, we report that non-infectious immature DENV particles, which are released in large numbers by DENV-infected cells, drive endothelial activation via the TLR2 axis. We show that fully immature DENV particles induce a rapid, within 6 hours post-infection, inflammatory response in PBMCs. Furthermore, pharmacological blocking of TLR2/TLR6/CD14 and/or NF-kB prior to exposure of PBMCs to immature DENV reduces the initial production of inter alia TNF-α and IL-1ß by monocytes and prevents endothelial activation. However, prolonged TLR2 block induces TNF-α production and leads to exacerbated endothelial activation, indicating that TLR2-mediated responses play an important role not only in the initiation but also the resolution of inflammation. Altogether, these data indicate that the maturation status of the virus has the potential to influence the kinetics and extent of inflammatory responses during DENV infection.


Assuntos
Vírus da Dengue , Dengue , Humanos , Receptor 2 Toll-Like , Leucócitos Mononucleares , Receptor 6 Toll-Like , Fator de Necrose Tumoral alfa , NF-kappa B , Inflamação , Vírion
7.
Braz J Microbiol ; 53(4): 1941-1949, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098933

RESUMO

BACKGROUND: In recent years, several studies have demonstrated that bacterial ABC transporters present relevant antigen targets for the development of vaccines against bacteria such as Streptococcus pneumoniae and Enterococcus faecalis. In Streptococcus mutans, the glutamate transporter operon (glnH), encoding an ABC transporter, is associated with acid tolerance and represents an important virulence-associated factor for the development of dental caries. RESULTS: In this study, we generated a recombinant form of the S. mutans GlnH protein (rGlnH) in Bacillus subtilis. Mice immunized with this protein antigen elicited strong antigen-specific antibody responses after sublingual administration of a vaccine formulation containing a mucosal adjuvant, a non-toxic derivative of the heat-labile toxin (LTK63) originally produced by enterotoxigenic Escherichia coli (ETEC) strains. Serum anti-rGlnH antibodies reduced adhesion of S. mutans to the oral cavity of naïve mice. Moreover, mice actively immunized with rGlnH were partially protected from oral colonization after exposure to the S. mutans NG8 strain. CONCLUSIONS: Our results indicate that S. mutans rGlnH is a potential target antigen capable of inducing specific and protective antibody responses after immunization. Overall, these observations raise the prospect of the development of mucosal anti-caries vaccines.


Assuntos
Cárie Dentária , Streptococcus mutans , Camundongos , Animais , Streptococcus mutans/genética , Cariostáticos/metabolismo , Anticorpos Antibacterianos , Proteínas de Transporte/metabolismo , Ácido Glutâmico/metabolismo , Cárie Dentária/prevenção & controle , Cárie Dentária/metabolismo , Saliva/metabolismo , Proteínas/metabolismo
8.
Oncoimmunology ; 10(1): 1949896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367730

RESUMO

Although active immunotherapies are effective strategies to induce activation of CD8+ T cells, advanced stage tumors require further improvements for efficient control. Concerning the burden of cancer-related to Human papillomavirus (HPV), particularly the high incidence and mortality of cervical cancer, our group developed an approach based on a DNA vaccine targeting the HPV-16 E7 oncoprotein (pgDE7h). This immunotherapy is capable of inducing an antitumour CD8+ T cell response but show only partial control of tumors in more advanced growth stages. Here, we combined a chemotherapeutic agent (gemcitabine- Gem) with pgDE7h to overcome immunosuppression and improve antitumour responses in a preclinical mouse tumor model. Our results demonstrated that administration of Gem had synergistic antitumor effects when combined with pgDE7h leading to eradication of both early-stages and established tumors. Overall, the antiproliferative effects of Gem observed in vitro and in vivo provided an optimal window for immunotherapy. In addition, the enhanced antitumour responses induced by the combined therapeutic regimen included enhanced frequencies of antigen-presenting cells (APCs), E7-specific IFN-γ-producing CD8+ T cells, and cytotoxic CD8+ T cells and, concomitantly, less pronounced accumulation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). These findings demonstrated that the combination of Gem and an active immunotherapy strategy show increased effectiveness, leading to a reduced need for multiple drug doses and, therefore, decreased deleterious side effects avoiding resistance and tumor relapses. Altogether, our results provide evidence for a new and feasible chemoimmunotherapeutic strategy that supports future clinical translation.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vacinas de DNA , Animais , Linfócitos T CD8-Positivos , Desoxicitidina/análogos & derivados , Feminino , Humanos , Camundongos , Papillomaviridae , Infecções por Papillomavirus/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Gencitabina
9.
Nanomedicine ; 37: 102445, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303841

RESUMO

Chikungunya virus (CHIKV) is responsible for a self-limited illness that can evolve into long-lasting painful joint inflammation. In this study, we report a novel experimental CHIKV vaccine formulation of lipid nanoparticles loaded with a recombinant protein derived from the E2 structural protein. This antigen fragment, designated ∆E2.1, maintained the antigenicity of the native viral protein and was specifically recognized by antibodies induced in CHIKV-infected patients. The antigen has been formulated into nanoparticles consisting of nano-multilamellar vesicles (NMVs) combined with the adjuvant monophosphoryl lipid A (MPLA). The vaccine formulation demonstrated a depot effect, leading to controlled antigen release, and induced strong antibody responses significantly higher than in mice immunized with the purified protein combined with the adjuvant. More relevantly, E2-specific antibodies raised in mice immunized with ∆E2.1-loaded NMV-MPLA neutralized CHIKV under in vitro conditions. Taken together, the results demonstrated that the new nanoparticle-based vaccine formulation represents a promising approach for the development of effective anti-CHIKV vaccines.


Assuntos
Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Lipossomos/imunologia , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/efeitos dos fármacos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/efeitos dos fármacos , Anticorpos Antivirais/imunologia , Febre de Chikungunya/terapia , Febre de Chikungunya/virologia , Vírus Chikungunya/patogenicidade , Humanos , Lipossomos/química , Lipossomos/farmacologia , Camundongos , Nanopartículas/química , Proteínas do Envelope Viral/farmacologia , Vacinas Virais/imunologia
10.
Immunol Cell Biol ; 93(10): 868-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25953029

RESUMO

DNA vaccines have failed to induce satisfactory immune responses in humans. Several mechanisms of double-stranded DNA (dsDNA) sensing have been described, and modulate DNA vaccine immunogenicity at many levels. We hypothesized that the immunogenicity of DNA vaccines in humans is suppressed by APOBEC (apolipoprotein B (APOB) mRNA-editing, catalytic polypeptide)-mediated plasmid degradation. We showed that plasmid sensing via STING (stimulator of interferon (IFN) genes) and TBK-1 (TANK-binding kinase 1) leads to IFN-ß induction, which results in APOBEC3A mRNA upregulation through a mechanism involving protein kinase C signaling. We also showed that murine APOBEC2 expression in HEK293T cells led to a 10-fold reduction in intracellular plasmid levels and plasmid-encoded mRNA, and a 2.6-fold reduction in GFP-expressing cells. A bicistronic DNA vaccine expressing an immunogen and an APOBEC2-specific shRNA efficiently silenced APOBEC2 both in vitro and in vivo, increasing the frequency of induced IFN-γ-secreting T cells. Our study brings new insights into the intracellular machinery involved in dsDNA sensing and how to modulate it to improve DNA vaccine immunogenicity in humans.


Assuntos
Apolipoproteínas B/metabolismo , Citidina Desaminase/metabolismo , HIV-1/fisiologia , Proteínas Musculares/metabolismo , Proteínas/metabolismo , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Desaminases APOBEC , Animais , Antígenos Virais/genética , Apolipoproteínas B/genética , Citidina Desaminase/genética , Células HEK293 , Antígenos HLA-DR/genética , Humanos , Imunomodulação , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Proteínas Musculares/genética , Fragmentos de Peptídeos/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/genética , Edição de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transgenes/genética , Vacinas de DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA