Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nat Commun ; 15(1): 1791, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424056

RESUMO

Stool samples for fecal immunochemical tests (FIT) are collected in large numbers worldwide as part of colorectal cancer screening programs. Employing FIT samples from 1034 CRCbiome participants, recruited from a Norwegian colorectal cancer screening study, we identify, annotate and characterize more than 18000 DNA viruses, using shotgun metagenome sequencing. Only six percent of them are assigned to a known taxonomic family, with Microviridae being the most prevalent viral family. Linking individual profiles to comprehensive lifestyle and demographic data shows 17/25 of the variables to be associated with the gut virome. Physical activity, smoking, and dietary fiber consumption exhibit strong and consistent associations with both diversity and relative abundance of individual viruses, as well as with enrichment for auxiliary metabolic genes. We demonstrate the suitability of FIT samples for virome analysis, opening an opportunity for large-scale studies of this enigmatic part of the gut microbiome. The diverse viral populations and their connections to the individual lifestyle uncovered herein paves the way for further exploration of the role of the gut virome in health and disease.


Assuntos
Neoplasias Colorretais , Vírus , Humanos , Viroma , Vírus de DNA/genética , Vírus/genética , DNA , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética
2.
Front Endocrinol (Lausanne) ; 14: 1173481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107520

RESUMO

Background: Graves' disease (GD) and Graves' orbitopathy (GO) result from ongoing stimulation of the TSH receptor due to autoantibodies acting as persistent agonists. Orbital pre-adipocytes and fibroblasts also express the TSH receptor, resulting in expanded retro-orbital tissue and causing exophthalmos and limited eye movement. Recent studies have shown that GD/GO patients have a disturbed gut microbiome composition, which has been associated with increased intestinal permeability. This study hypothesizes that enhanced intestinal permeability may aggravate orbital inflammation and, thus, increase myofibroblast differentiation and the degree of fibrosis. Methods: Two distinct cohorts of GO patients were studied, one of which was a unique cohort consisting of blood, fecal, and retro-orbital tissue samples. Intestinal permeability was assessed by measuring serum lipopolysaccharide-binding protein (LBP), zonulin, TLR5, and TLR9 ligands. The influx of macrophages and accumulation of T-cells and myofibroblast were quantified in orbital connective tissue. The NanoString immune-oncology RNA targets panel was used to determine the transcriptional profile of active fibrotic areas within orbital sections. Results: GO patients displayed significantly higher LBP serum concentrations than healthy controls. Within the MicroGO cohort, patients with high serum LBP levels also showed higher levels of zonulin and TLR5 and TLR9 ligands in their circulation. The increased intestinal permeability was accompanied by augmented expression of genes marking immune cell infiltration and encoding key proteins for immune cell adhesion, antigen presentation, and cytokine signaling in the orbital tissue. Macrophage influx was positively linked to the extent of T cell influx and fibroblast activation within GO-affected orbital tissues. Moreover, serum LBP levels significantly correlated with the abundance of specific Gram-negative gut bacteria, linking the gut to local orbital inflammation. Conclusion: These results indicate that GO patients have enhanced intestinal permeability. The subsequent translocation of bacterial compounds to the systemic circulation may aggravate inflammatory processes within the orbital tissue and, as a consequence, augment the proportion of activated myofibroblasts, which actively secrete extracellular matrix leading to retro-orbital tissue expansion. These findings warrant further exploration to assess the correlation between specific inflammatory pathways in the orbital tissue and the gut microbiota composition and may pave the way for new microbiota-targeting therapies.


Assuntos
Doença de Graves , Oftalmopatia de Graves , Humanos , Oftalmopatia de Graves/metabolismo , Miofibroblastos , Receptores da Tireotropina , Função da Barreira Intestinal , Receptor 5 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Doença de Graves/metabolismo , Inflamação
3.
Inflamm Bowel Dis ; 29(1): 116-124, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36040412

RESUMO

BACKGROUND: The role of intestinal microbiota in inflammatory bowel diseases is intensively researched. Pediatric studies on the relation between microbiota and treatment response are sparse. We aimed to determine whether absolute abundances of gut microbes characterize the response to infliximab induction in pediatric inflammatory bowel disease. METHODS: We recruited pediatric patients with inflammatory bowel disease introduced to infliximab at Children's Hospital, University of Helsinki. Stool samples were collected at 0, 2, and 6 weeks for microbiota and calprotectin analyses. We defined treatment response as fecal calprotectin value <100 µg/g at week 6. Intestinal microbiota were analyzed by 16S ribosomal RNA gene amplicon sequencing using the Illumina MiSeq platform. We analyzed total bacterial counts using quantitative polymerase chain reaction and transformed the relative abundances into absolute abundances based on the total counts. RESULTS: At baseline, the intestinal microbiota in the treatment responsive group (n = 10) showed a higher absolute abundance of Bifidobacteriales and a lower absolute abundance of Actinomycetales than nonresponders (n = 19). The level of inflammation according to fecal calprotectin showed no statistically significant association with the absolute abundances of fecal microbiota. The results on relative abundances differed from the absolute abundances. At the genus level, the responders had an increased relative abundance of Anaerosporobacter but a reduced relative abundance of Parasutterella at baseline. CONCLUSIONS: High absolute abundance of Bifidobacteriales in the gut microbiota of pediatric patients reflects anti-inflammatory characteristics associated with rapid response to therapy. This warrants further studies on whether modification of pretreatment microbiota might improve the outcomes.


We studied absolute and relative abundances of fecal microbiota in relation to response to induction therapy with infliximab in pediatric inflammatory bowel disease. We discovered that a high absolute abundance of anti-inflammatory Bifidobacteriales at baseline associated with response.


Assuntos
Doenças Inflamatórias Intestinais , Microbiota , Humanos , Criança , Infliximab/uso terapêutico , Fator de Necrose Tumoral alfa , Inibidores do Fator de Necrose Tumoral , Doenças Inflamatórias Intestinais/tratamento farmacológico , Fezes/química , Complexo Antígeno L1 Leucocitário/análise
4.
Cells ; 11(17)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36078075

RESUMO

Anastomotic leakage is a major complication following colorectal surgery leading to peritonitis, complications, and mortality. Akkermansia muciniphila has shown beneficial effects on the gut barrier function. Whether A. muciniphila reduces peritonitis and mortality during colonic leakage is unknown. Whether A. muciniphila can directly modulate the expression of genes in the colonic mucosa in humans has never been studied. We investigated the effects of a pretreatment (14 days) with live A. muciniphila prior to surgical colonic perforation on peritonitis, mortality, and wound healing. We used mice with an inducible intestinal-epithelial-cell-specific deletion of MyD88 (IEC-MyD88 KO) to investigate the role of the innate immune system in this context. In a proof-of-concept pilot study, healthy humans were exposed to A. muciniphila for 2 h and colonic biopsies taken before and after colonic instillation for transcriptomic analysis. Seven days after colonic perforation, A.-muciniphila-treated mice had significantly lower mortality and severity of peritonitis. This effect was associated with significant improvements of wound histological healing scores, higher production of IL22, but no changes in the mucus layer thickness or genes involved in cell renewal, proliferation, or differentiation. All these effects were abolished in IEC-MyD88 KO mice. Finally, human subjects exposed to A. muciniphila exhibited an increased level of the bacterium at the mucus level 2 h after instillation and significant changes in the expression of different genes involved in the regulation of cell cycling, gene transcription, immunity, and inflammation in their colonic mucosa. A. muciniphila improves wound healing during transmural colonic wall defect through mechanisms possibly involving IL22 signaling and requiring MyD88 in the intestinal cells. In healthy humans, colonic administration of A. muciniphila is well tolerated and changes the expression of genes involved in the immune pathways.


Assuntos
Akkermansia , Fator 88 de Diferenciação Mieloide , Peritonite , Cicatrização , Animais , Colo/microbiologia , Colo/patologia , Humanos , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Peritonite/metabolismo , Peritonite/terapia , Projetos Piloto , Verrucomicrobia/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
5.
Nat Commun ; 13(1): 3964, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803930

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and therapeutic options for advanced HCC are limited. Here, we observe that intestinal dysbiosis affects antitumor immune surveillance and drives liver disease progression towards cancer. Dysbiotic microbiota, as seen in Nlrp6-/- mice, induces a Toll-like receptor 4 dependent expansion of hepatic monocytic myeloid-derived suppressor cells (mMDSC) and suppression of T-cell abundance. This phenotype is transmissible via fecal microbiota transfer and reversible upon antibiotic treatment, pointing to the high plasticity of the tumor microenvironment. While loss of Akkermansia muciniphila correlates with mMDSC abundance, its reintroduction restores intestinal barrier function and strongly reduces liver inflammation and fibrosis. Cirrhosis patients display increased bacterial abundance in hepatic tissue, which induces pronounced transcriptional changes, including activation of fibro-inflammatory pathways as well as circuits mediating cancer immunosuppression. This study demonstrates that gut microbiota closely shapes the hepatic inflammatory microenvironment opening approaches for cancer prevention and therapy.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Microbiota , Animais , Carcinoma Hepatocelular/metabolismo , Disbiose/complicações , Neoplasias Hepáticas/metabolismo , Camundongos , Microambiente Tumoral
6.
PLoS One ; 17(6): e0269561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35679312

RESUMO

BACKGROUND AND AIMS: Subjects with congenital chloride diarrhea (CLD; a defect in solute carrier family 26 member 3 (SLC26A3)) are prone to inflammatory bowel disease (IBD). We investigated fecal microbiota in CLD and CLD-associated IBD. We also tested whether microbiota is modulated by supplementation with the short-chain fatty acid butyrate. SUBJECTS AND METHODS: We recruited 30 patients with CLD for an observational 3-week follow-up study. Thereafter, 16 consented to oral butyrate substitution for a 3-week observational period. Fecal samples, collected once a week, were assayed for calprotectin and potential markers of inflammation, and studied by 16S ribosomal ribonucleic acid (rRNA) gene amplicon sequencing and compared to that of 19 healthy controls and 43 controls with Crohn's disease. Data on intestinal symptoms, diet and quality of life were collected. RESULTS: Patients with CLD had increased abundances of Proteobacteria, Veillonella, and Prevotella, and lower abundances of normally dominant taxa Ruminococcaceae and Lachnospiraceae when compared with healthy controls and Crohn´s disease. No major differences in fecal microbiota were found between CLD and CLD-associated IBD (including two with yet untreated IBD). Butyrate was poorly tolerated and showed no major effects on fecal microbiota or biomarkers in CLD. CONCLUSIONS: Fecal microbiota in CLD is different from that of healthy subjects or Crohn´s disease. Unexpectedly, no changes in the microbiota or fecal markers characterized CLD-associated IBD, an entity with high frequency among patients with CLD.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Biomarcadores , Butiratos , Doença de Crohn/microbiologia , Diarreia/congênito , Diarreia/genética , Fezes/microbiologia , Seguimentos , Microbioma Gastrointestinal/genética , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Erros Inatos do Metabolismo , Qualidade de Vida , RNA Ribossômico 16S/genética
7.
Nat Rev Gastroenterol Hepatol ; 19(10): 625-637, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641786

RESUMO

Ever since Akkermansia muciniphila was discovered and characterized two decades ago, numerous studies have shown that the lack or decreased abundance of this commensal bacterium was linked with multiple diseases (such as obesity, diabetes, liver steatosis, inflammation and response to cancer immunotherapies). Although primarily based on simple associations, there are nowadays an increasing number of studies moving from correlations to causality. The causal evidence derived from a variety of animal models performed in different laboratories and recently was also recapitulated in a human proof-of-concept trial. In this Review, we cover the history of the discovery of A. muciniphila and summarize the numerous findings and main mechanisms of action by which this intestinal symbiont improves health. A comparison of this microorganism with other next-generation beneficial microorganisms that are being developed is also made.


Assuntos
Akkermansia , Verrucomicrobia , Animais , Humanos , Intestinos/microbiologia , Obesidade/microbiologia , Verrucomicrobia/fisiologia
8.
Sci Rep ; 12(1): 6654, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459927

RESUMO

Pediatric inflammatory bowel disease (PIBD) is a globally increasing chronic inflammatory disease associated with an imbalanced intestinal microbiota and treated with several treatment options, including anti-tumor necrosis factor alpha (TNF-α), such as infliximab (IFX). Up to half of the patients do not respond to the drug and there are no methods for response prediction. Our aim was to predict IFX response from the gut microbiota composition since this is largely unexplored in PIBD. The gut microbiota of 30 PIBD patients receiving IFX was studied by MiSeq sequencing targeting 16S and ITS region from fecal samples collected before IFX and two and six weeks after the start of treatment. The response to IFX induction was determined by fecal calprotectin value < 100 µg/g at week six. The bacterial microbiota differed significantly between response groups, with higher relative abundance of butyrate-producing bacteria in responders compared to non-responders at baseline, validated by high predictive power (area under curve = 0.892) for baseline Ruminococcus and calprotectin. Additionally, non-responders had higher abundance of Candida, while responders had higher abundance of Saccharomyces at the end of the study. The gut microbiota composition in PIBD patients could predict response to IFX treatment in the future.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Fator de Necrose Tumoral alfa , Bactérias/genética , Criança , Doença de Crohn/tratamento farmacológico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Infliximab/uso terapêutico , Complexo Antígeno L1 Leucocitário , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/uso terapêutico
9.
Metabolites ; 12(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35448490

RESUMO

Overweight, obesity, and their comorbidities are currently considered a major public health concern. Today considerable efforts are still needed to develop efficient strategies able to attenuate the burden of these diseases. Nutritional interventions, some with plant extracts, present promising health benefits. In this study, we evaluated the action of Camu-Camu (Myrciaria dubia), an Amazonian fruit rich in polyphenols and vitamin C, on the prevention of obesity and associated disorders in mice and the abundance of Akkermansia muciniphila in both cecum and feces. Methods: We investigated the dose-response effects of Camu-Camu extract (CCE) in the context of high-fat-diet (HFD)-induced obesity. After 5 weeks of supplementation, we demonstrated that the two doses of CCE differently improved glucose and lipid homeostasis. The lowest CCE dose (62.5 mg/kg) preferentially decreased non-HDL cholesterol and free fatty acids (FFA) and increased the abundance of A. muciniphila without affecting liver metabolism, while only the highest dose of CCE (200 mg/kg) prevented excessive body weight gain, fat mass gain, and hepatic steatosis. Both doses decreased fasting hyperglycemia induced by HFD. In conclusion, the use of plant extracts, and particularly CCE, may represent an additional option in the support of weight management strategies and glucose homeostasis alteration by mechanisms likely independent from the modulation of A. muciniphila abundance.

10.
Gut ; 71(5): 1020-1032, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35105664

RESUMO

The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Receptores Acoplados a Proteínas G/metabolismo
11.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613488

RESUMO

Akkermansia muciniphila is a mucosal symbiont considered a gut microbial marker in healthy individuals, as its relative abundance is significantly reduced in subjects with gut inflammation and metabolic disturbances. Dietary polyphenols can distinctly stimulate the relative abundance of A. muciniphila, contributing to the attenuation of several diseases, including obesity, type 2 diabetes, inflammatory bowel diseases, and liver damage. However, mechanistic insight into how polyphenols stimulate A. muciniphila or its activity is limited. This review focuses on dietary interventions in rodents and humans and in vitro studies using different phenolic classes. We provide critical insights with respect to potential mechanisms explaining the effects of polyphenols affecting A. muciniphila. Anthocyanins, flavan-3-ols, flavonols, flavanones, stilbenes, and phenolic acids are shown to increase relative A. muciniphila levels in vivo, whereas lignans exert the opposite effect. Clinical trials show consistent findings, and high intervariability relying on the gut microbiota composition at the baseline and the presence of multiple polyphenol degraders appear to be cardinal determinants in inducing A. muciniphila and associated benefits by polyphenol intake. Polyphenols signal to the AhR receptor and impact the relative abundance of A. muciniphila in a direct and indirect fashion, resulting in the restoration of intestinal epithelial integrity and homeostatic crosstalk with the gut microbiota by affecting IL-22 production. Moreover, recent evidence suggests that A. muciniphila participates in the initial hydrolysis of some polyphenols but does not participate in their complete metabolism. In conclusion, the consumption of polyphenol-rich foods targeting A. muciniphila as a pivotal intermediary represents a promising precision nutritional therapy to prevent and attenuate metabolic and inflammatory diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Polifenóis , Humanos , Polifenóis/farmacologia , Polifenóis/metabolismo , Antocianinas/metabolismo , Verrucomicrobia/metabolismo
12.
Sci Rep ; 11(1): 23297, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857814

RESUMO

Accumulating evidence indicates that gut microbiota may regulate sex-hormone levels in the host, with effects on reproductive health. Very little is known about the development of intestinal microbiota during puberty in humans. To assess the connection between pubertal timing and fecal microbiota, and to assess how fecal microbiota develop during puberty in comparison with adult microbiota, we utilized a Finnish allergy-prevention-trial cohort (Flora). Data collected at 13-year follow-up were compared with adult data from a different Finnish cohort. Among the 13-year-old participants we collected questionnaire information, growth data from school-health-system records and fecal samples from 148 participants. Reference adult fecal samples were received from the Health and Early Life Microbiota (HELMi) cohort (n = 840). Fecal microbiota were analyzed using 16S rRNA gene amplicon sequencing; the data were correlated with pubertal timing and compared with data on adult microbiota. Probiotic intervention in the allergy-prevention-trial cohort was considered as a confounding factor only. The main outcome was composition of the microbiota in relation to pubertal timing (time to/from peak growth velocity) in both sexes separately, and similarity to adult microbiota. In girls, fecal microbiota became more adult-like with pubertal progression (p = 0.009). No such development was observed in boys (p = 0.9). Both sexes showed a trend towards increasing relative abundance of estrogen-metabolizing Clostridia and decreasing Bacteroidia with pubertal development, but this was statistically significant in girls only (p = 0.03). In girls, pubertal timing was associated positively with exposure to cephalosporins prior to the age of 10. Our data support the hypothesis that gut microbiota, particularly members of Ruminococcaceae, may affect pubertal timing, possibly via regulating host sex-hormone levels.Trial registration The registration number for the allergy-prevention-trial cohort: ClinicalTrials.gov, NCT00298337, registered 1 March 2006-Retrospectively registered, https://clinicaltrials.gov/show/NCT00298337 . The adult-comparison cohort (HELMi) is NCT03996304.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Puberdade/fisiologia , Caracteres Sexuais , Adolescente , Clostridiaceae , Estudos de Coortes , Estrogênios/metabolismo , Fezes/microbiologia , Feminino , Finlândia , Humanos , Masculino , Ruminococcus , Inquéritos e Questionários
13.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884466

RESUMO

Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.


Assuntos
Dieta/efeitos adversos , Disbiose/terapia , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/efeitos adversos , Disbiose/etiologia , Transplante de Microbiota Fecal , Humanos , Prebióticos/efeitos adversos , Probióticos/efeitos adversos
14.
BMC Cancer ; 21(1): 930, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407780

RESUMO

BACKGROUND: Colorectal cancer (CRC) screening reduces CRC incidence and mortality. However, current screening methods are either hampered by invasiveness or suboptimal performance, limiting their effectiveness as primary screening methods. To aid in the development of a non-invasive screening test with improved sensitivity and specificity, we have initiated a prospective biomarker study (CRCbiome), nested within a large randomized CRC screening trial in Norway. We aim to develop a microbiome-based classification algorithm to identify advanced colorectal lesions in screening participants testing positive for an immunochemical fecal occult blood test (FIT). We will also examine interactions with host factors, diet, lifestyle and prescription drugs. The prospective nature of the study also enables the analysis of changes in the gut microbiome following the removal of precancerous lesions. METHODS: The CRCbiome study recruits participants enrolled in the Bowel Cancer Screening in Norway (BCSN) study, a randomized trial initiated in 2012 comparing once-only sigmoidoscopy to repeated biennial FIT, where women and men aged 50-74 years at study entry are invited to participate. Since 2017, participants randomized to FIT screening with a positive test result have been invited to join the CRCbiome study. Self-reported diet, lifestyle and demographic data are collected prior to colonoscopy after the positive FIT-test (baseline). Screening data, including colonoscopy findings are obtained from the BCSN database. Fecal samples for gut microbiome analyses are collected both before and 2 and 12 months after colonoscopy. Samples are analyzed using metagenome sequencing, with taxonomy profiles, and gene and pathway content as primary measures. CRCbiome data will also be linked to national registries to obtain information on prescription histories and cancer relevant outcomes occurring during the 10 year follow-up period. DISCUSSION: The CRCbiome study will increase our understanding of how the gut microbiome, in combination with lifestyle and environmental factors, influences the early stages of colorectal carcinogenesis. This knowledge will be crucial to develop microbiome-based screening tools for CRC. By evaluating biomarker performance in a screening setting, using samples from the target population, the generalizability of the findings to future screening cohorts is likely to be high. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01538550 .


Assuntos
Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Microbioma Gastrointestinal , Estilo de Vida , Idoso , Estudos de Casos e Controles , Colonoscopia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/microbiologia , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Noruega/epidemiologia , Sangue Oculto , Prognóstico , Estudos Prospectivos , Curva ROC
15.
Cell Metab ; 33(6): 1098-1110, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077717

RESUMO

Fecal microbiota transplantation (FMT) is gaining considerable traction as a therapeutic approach to influence the course of a plethora of chronic conditions, ranging from metabolic syndrome and malignancies to auto-immune and neurological diseases, and helped to establish the contribution of the gut microbiome to these conditions. Although FMT procedures have yielded important mechanistic insights, their use in clinical practice may be limited due to practical objections in the setting of metabolic diseases. While its applicability is established to treat recurrent Clostridiodes difficile, FMT is emerging in ulcerative colitis and various other diseases. A particularly new insight is that FMTs may not only alter insulin sensitivity but may also alter the course of type 1 diabetes by attenuating underlying auto-immunity. In this review, we will outline the major principles and pitfalls of FMT and where optimization of study design and the procedure itself will further advance the field of cardiometabolic medicine.


Assuntos
Infecções por Clostridium/terapia , Colite Ulcerativa/terapia , Diabetes Mellitus Tipo 1/terapia , Transplante de Microbiota Fecal/métodos , Humanos
16.
Clin Cancer Res ; 27(13): 3784-3792, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33883174

RESUMO

PURPOSE: Cachexia is a multifactorial syndrome, associated with poor survival in patients with cancer, and is influenced by the gut microbiota. We investigated the effects of fecal microbiota transplantation (FMT) on cachexia and treatment response in patients with advanced gastroesophageal cancer. EXPERIMENTAL DESIGN: In a double-blind randomized placebo-controlled trial performed in the Amsterdam University Medical Center, we assigned 24 cachectic patients with metastatic HER2-negative gastroesophageal cancer to either allogenic FMT (healthy obese donor) or autologous FMT, prior to palliative chemotherapy (capecitabine and oxaliplatin). Primary objective was to assess the effect of allogenic FMT on satiety. Secondary outcomes were other features of cachexia, along with disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and toxicity. Finally, exploratory analyses were performed on the effect of FMT on gut microbiota composition (metagenomic sequencing) and metabolites (untargeted metabolomics). RESULTS: Allogenic FMT did not improve any of the cachexia outcomes. Patients in the allogenic group (n = 12) had a higher DCR at 12 weeks (P = 0.035) compared with the autologous group (n = 12), longer median OS of 365 versus 227 days [HR = 0.38; 95% confidence interval (CI), 0.14-1.05; P = 0.057] and PFS of 204 versus 93 days (HR = 0.50; 95% CI, 0.21-1.20; P = 0.092). Patients in the allogenic group showed a significant shift in fecal microbiota composition after FMT (P = 0.010) indicating proper engraftment of the donor microbiota. CONCLUSIONS: FMT from a healthy obese donor prior to first-line chemotherapy did not affect cachexia, but may have improved response and survival in patients with metastatic gastroesophageal cancer. These results provide a rational for larger FMT trials.


Assuntos
Caquexia/etiologia , Caquexia/terapia , Neoplasias Esofágicas/complicações , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Neoplasias Gástricas/complicações , Adulto , Idoso , Caquexia/microbiologia , Método Duplo-Cego , Neoplasias Esofágicas/microbiologia , Neoplasias Esofágicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Obesidade/microbiologia , Sobrepeso/microbiologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
17.
J Microbiol Methods ; 185: 106204, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872639

RESUMO

We evaluated a novel 'protected' biopsy method to reliably ascertain the spatial distribution of the mucosa-adherent colonic microbiota. Apart from minor differences at genus level, overall similarities along the colon were high between the various areas, irrespective of protected or unprotected sampling.


Assuntos
Biópsia/métodos , Colo/microbiologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , Adulto , Idoso , Anemia Ferropriva , Biópsia/instrumentação , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S , Manejo de Espécimes/métodos
18.
PeerJ ; 8: e10442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304658

RESUMO

We studied the impact of bariatric surgery on the intestinal microbiota of morbidly obese study subjects. A total of 13 morbidly obese women (five of which had type 2 diabetes) and 14 healthy age- and gender-matched controls were recruited and the microbiota composition of fecal samples were determined by using a phylogenetic microarray. Sampling of the patients took place just one month before and 6 months after the operation. Within six months after bariatric surgery, the obese subjects had lost on average a quarter of their weight whereas four of the five of the diabetic subjects were in remission. Bariatric surgery was associated with an increased microbial community richness and Bacteroidetes/Firmicutes ratio. In addition, we observed an increased relative abundance of facultative anaerobes, such as Streptococcus spp., and a reduction in specific butyrate-producing Firmicutes. The observed postoperative alterations in intestinal microbiota reflect adaptation to the changing conditions in the gastrointestinal tract, such as energy restriction and the inability to process fiber-rich foods after bariatric surgery.

19.
Hepatol Commun ; 4(11): 1578-1590, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33163830

RESUMO

The intestinal microbiota has been linked to the development and prevalence of steatohepatitis in humans. Interestingly, steatohepatitis is significantly lower in individuals taking a plant-based, low-animal-protein diet, which is thought to be mediated by gut microbiota. However, data on causality between these observations in humans is scarce. In this regard, fecal microbiota transplantation (FMT) using healthy donors is safe and is capable of changing microbial composition in human disease. We therefore performed a double-blind randomized controlled proof-of-principle study in which individuals with hepatic steatosis on ultrasound were randomized to two study arms: lean vegan donor (allogenic n = 10) or own (autologous n = 11) FMT. Both were performed three times at 8-week intervals. A liver biopsy was performed at baseline and after 24 weeks in every subject to determine histopathology (Nonalcoholic Steatohepatitis Clinical Research Network) classification and changes in hepatic gene expression based on RNA sequencing. Secondary outcome parameters were changes in intestinal microbiota composition and fasting plasma metabolomics. We observed a trend toward improved necro-inflammatory histology, and found significant changes in expression of hepatic genes involved in inflammation and lipid metabolism following allogenic FMT. Intestinal microbial community structure changed following allogenic FMT, which was associated with changes in plasma metabolites as well as markers of . Conclusion: Allogenic FMT using lean vegan donors in individuals with hepatic steatosis shows an effect on intestinal microbiota composition, which is associated with beneficial changes in plasma metabolites and markers of steatohepatitis.

20.
Am J Physiol Endocrinol Metab ; 318(4): E480-E491, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961709

RESUMO

Probiotic bacteria can protect from ovariectomy (ovx)-induced bone loss in mice. Akkermansia muciniphila is considered to have probiotic potential due to its beneficial effect on obesity and insulin resistance. The purpose of the present study was to determine if treatment with pasteurized Akkermansia muciniphila (pAkk) could prevent ovx-induced bone loss. Mice were treated with vehicle or pAkk for 4 wk, starting 3 days before ovx or sham surgery. Treatment with pAkk reduced fat mass accumulation confirming earlier findings. However, treatment with pAkk decreased trabecular and cortical bone mass in femur and vertebra of gonadal intact mice and did not protect from ovx-induced bone loss. Treatment with pAkk increased serum parathyroid hormone (PTH) levels and increased expression of the calcium transporter Trpv5 in kidney suggesting increased reabsorption of calcium in the kidneys. Serum amyloid A 3 (SAA3) can suppress bone formation and mediate the effects of PTH on bone resorption and bone loss in mice and treatment with pAkk increased serum levels of SAA3 and gene expression of Saa3 in colon. Moreover, regulatory T cells can be protective of bone and pAkk-treated mice had decreased number of regulatory T cells in mesenteric lymph nodes and bone marrow. In conclusion, treatment with pAkk protected from ovx-induced fat mass gain but not from bone loss and reduced bone mass in gonadal intact mice. Our findings with pAkk differ from some probiotics that have been shown to protect bone mass, demonstrating that not all prebiotic and probiotic factors have the same effect on bone.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Microbioma Gastrointestinal/fisiologia , Osteoporose/metabolismo , Probióticos/farmacologia , Verrucomicrobia/metabolismo , Tecido Adiposo/metabolismo , Akkermansia , Animais , Canais de Cálcio/metabolismo , Colo/efeitos dos fármacos , Colo/microbiologia , Feminino , Fêmur/efeitos dos fármacos , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Hormônio Paratireóideo/metabolismo , Pasteurização , Proteína Amiloide A Sérica/metabolismo , Coluna Vertebral/efeitos dos fármacos , Linfócitos T Reguladores , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA