Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Ageing Res Rev ; 99: 102390, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925480

RESUMO

OBJECTIVE: Exposure to pesticides is a risk factor for various diseases, yet its association with biological aging remains unclear. We aimed to systematically investigate the relationship between pesticide exposure and biological aging. METHODS: PubMed, Embase and Web of Science were searched from inception to August 2023. Observational studies investigating the association between pesticide exposure and biomarkers of biological aging were included. Three-level random-effect meta-analysis was used to synthesize the data. Risk of bias was assessed by the Newcastle-Ottawa Scale. RESULTS: Twenty studies evaluating the associations between pesticide exposure and biomarkers of biological aging in 10,368 individuals were included. Sixteen reported telomere length and four reported epigenetic clocks. Meta-analysis showed no statistically significant associations between pesticide exposure and the Hannum clock (pooled ß = 0.27; 95 %CI: -0.25, 0.79), or telomere length (pooled Hedges'g = -0.46; 95 %CI: -1.10, 0.19). However, the opposite direction of effects for the two outcomes showed an indication of possible accelerated biological aging. After removal of influential effect sizes or low-quality studies, shorter telomere length was found in higher-exposed populations. CONCLUSION: The existing evidence for associations between pesticide exposure and biological aging is limited due to the scarcity of studies on epigenetic clocks and the substantial heterogeneity across studies on telomere length. High-quality studies incorporating more biomarkers of biological aging, focusing more on active chemical ingredients of pesticides and accounting for potential confounders are needed to enhance our understanding of the impact of pesticides on biological aging.

2.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L460-L466, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37605846

RESUMO

Inhalation of noxious gasses induces oxidative stress in airway epithelial cells (AECs), which may lead to cellular senescence and contribute to the development of chronic obstructive pulmonary disease (COPD). FAM13A, a well-known COPD susceptibility gene, is highly expressed in airway epithelium. We studied whether its expression is associated with aging and cellular senescence and affects airway epithelial responses to paraquat, a cellular senescence inducer. The association between age and FAM13A expression was investigated in two datasets of human lung tissue and bronchial brushings from current/ex-smokers with/without COPD. Protein levels of FAM13A and cellular senescence marker p21 were investigated using immunohistochemistry in lung tissue from patients with COPD. In vitro, FAM13A and P21 expression was assessed using qPCR in air-liquid-interface (ALI)-differentiated AECs in absence/presence of paraquat. In addition, FAM13A was overexpressed in human bronchial epithelial 16HBE cells and the effect on P21 expression (qPCR) and mitochondrial reactive oxygen species (ROS) production (MitoSOX staining) was assessed. Lower FAM13A expression was significantly associated with increasing age in lung tissue and bronchial epithelium. In airway epithelium of patients with COPD, we found a negative correlation between FAM13A and p21 protein levels. In ALI-differentiated AECs, the paraquat-induced decrease in FAM13A expression was accompanied by increased P21 expression. In 16HBE cells, the overexpression of FAM13A significantly reduced paraquat-induced P21 expression and mitochondrial ROS production. Our data suggest that FAM13A expression decreases with aging, resulting in higher P21 expression and mitochondrial ROS production in the airway epithelium, thus facilitating cellular senescence and as such potentially contributing to accelerated lung aging in COPD.NEW & NOTEWORTHY To our knowledge, this is the first study investigating the role of the COPD susceptibility gene FAM13A in aging and cellular senescence. We found that FAM13A negatively regulates the expression of the cellular senescence marker P21 and mitochondrial ROS production in the airway epithelium. In this way, the lower expression of FAM13A observed upon aging may facilitate cellular senescence and potentially contribute to accelerated lung aging in COPD.


Assuntos
Paraquat , Doença Pulmonar Obstrutiva Crônica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Paraquat/toxicidade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Epiteliais/metabolismo , Senescência Celular , Proteínas Ativadoras de GTPase/metabolismo
3.
Breast Cancer Res Treat ; 197(1): 123-135, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36315307

RESUMO

PURPOSE: Follow-up for breast cancer survivors consists of after care and surveillance. The benefits of routine surveillance visits remain debatable. In this study we compared the severity of locoregional recurrences (LRRs) and the subsequent risk of a distant metastasis (DM) between LRRs detected at routine and interval visits. METHODS: Women diagnosed with early breast cancer between 2003 and 2008 in one of the 15 participating hospitals, and who developed a LRR as first event after primary treatment, were selected from the Netherlands Cancer Registry (Cohort A). Chi-squared tests were used to compare the severity of routine- and interval-detected local recurrences (LRs) and regional recurrences (RRs), using tumor size, tumor grade, and number of positive lymph nodes. Data on the development of a subsequent DM after a LRR were available for a subset of patients (Cohort B). Cohort B was used to estimate the association between way of LRR-detection and risk of a DM. RESULTS: Cohort A consisted of 109 routine- and 113 interval-LRR patients. The severity of routine-detected LRs or RRs and interval-detected LRs or RRs did not significantly differ. Cohort B consisted of 66 routine- and 61 interval-LRR patients. Sixteen routine- (24%) and 17 (28%) interval-LRR patients developed a DM. After adjustment, way of LRR-detection was not significantly associated with the risk of a DM (hazard ratio: 1.22; 95% confidence interval: 0.49-3.06). CONCLUSION: The current study showed that routine visits did not lead to less severe LRRs and did not decrease the risk of a subsequent DM.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia , Países Baixos/epidemiologia
4.
Cells ; 11(21)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359818

RESUMO

Cigarette smoking causes hypomethylation of the gene Aryl Hydrocarbon Receptor Repressor (AHRR), which regulates detoxification and oxidative stress-responses. We investigated whether AHRR DNA methylation is related to chronic obstructive pulmonary disease (COPD) and studied its function in airway epithelial cells (AECs). The association with COPD was assessed in blood from never and current smokers with/without COPD, and in AECs from ex-smoking non-COPD controls and GOLD stage II-IV COPD patients cultured with/without cigarette smoke extract (CSE). The effect of CRISPR/Cas9-induced AHRR knockout on proliferation, CSE-induced mitochondrial membrane potential and apoptosis/necrosis in human bronchial epithelial 16HBE cells was studied. In blood, DNA methylation of AHRR at cg05575921 and cg21161138 was lower in smoking COPD subjects than smoking controls. In vitro, AHRR DNA methylation at these CpG-sites was lower in COPD-derived than control-derived AECs only upon CSE exposure. Upon AHRR knockout, we found a lower proliferation rate at baseline, stronger CSE-induced decrease in mitochondrial membrane potential, and higher CSE-induced late apoptosis/necroptosis. Together, our results show lower DNA methylation of AHRR upon smoking in COPD patients compared to non-COPD controls. Our data suggest that higher airway epithelial AHRR expression may lead to impaired cigarette smoke-induced mitochondrial dysfunction and apoptosis/necroptosis, potentially promoting unprogrammed/immunogenic cell death.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Receptores de Hidrocarboneto Arílico , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fumar Cigarros/efeitos adversos , Metilação de DNA/genética , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Nicotiana/efeitos adversos , Nicotiana/metabolismo
5.
Mol Genet Metab Rep ; 31: 100873, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782614

RESUMO

Isolated long-chain 3-keto-acyl CoA thiolase (LCKAT) deficiency is a rare long-chain fatty acid oxidation disorder caused by mutations in HADHB. LCKAT is part of a multi-enzyme complex called the mitochondrial trifunctional protein (MTP) which catalyzes the last three steps in the long-chain fatty acid oxidation. Until now, only three cases of isolated LCKAT deficiency have been described. All patients developed a severe cardiomyopathy and died before the age of 7 weeks. Here, we describe a newborn with isolated LCKAT deficiency, presenting with neonatal-onset cardiomyopathy, rhabdomyolysis, hypoglycemia and lactic acidosis. Bi-allelic 185G > A (p.Arg62His) and c1292T > C (p.Phe431Ser) mutations were found in HADHB. Enzymatic analysis in both lymphocytes and cultured fibroblasts revealed LCKAT deficiency with a normal long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD, also part of MTP) enzyme activity. Clinically, the patient showed recurrent cardiomyopathy, which was monitored by speckle tracking echocardiography. Subsequent treatment with special low-fat formula, low in long chain triglycerides (LCT) and supplemented with medium chain triglycerides (MCT) and ketone body therapy in (sodium-D,L-3-hydroxybutyrate) was well tolerated and resulted in improved carnitine profiles and cardiac function. Resveratrol, a natural polyphenol that has been shown to increase fatty acid oxidation, was also considered as a potential treatment option but showed no in vitro benefits in the patient's fibroblasts. Even though our patient deceased at the age of 13 months, early diagnosis and prompt initiation of dietary management with addition of sodium-D,L-3-hydroxybutyrate may have contributed to improved cardiac function and a much longer survival when compared to the previously reported cases of isolated LCKAT-deficiency.

6.
J Inherit Metab Dis ; 45(5): 952-962, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35722880

RESUMO

Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism.


Assuntos
Fenilcetonúrias , Tirosinemias , Criança , Humanos , Masculino , Saúde Mental , Redes e Vias Metabólicas , Testes Neuropsicológicos , Tirosinemias/genética
8.
Front Physiol ; 12: 690936, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163376

RESUMO

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disease characterized by chronic inflammation upon inhalation of noxious particles, e.g., cigarette smoke. FAM13A is one of the genes often found to be associated with COPD, however its function in the pathophysiology of COPD is incompletely understood. We studied its role in airway epithelial barrier integrity and cigarette smoke-induced epithelial responses. MATERIALS AND METHODS: Protein level and localization of FAM13A was assessed with immunohistochemistry in lung tissue from COPD patients and non-COPD controls. In vitro, FAM13A expression was determined in the absence or presence of cigarette smoke extract (CSE) in primary airway epithelial cells (AECs) from COPD patients and controls by western blotting. FAM13A was overexpressed in cell line 16HBE14o- and its effect on barrier function was monitored real-time by electrical resistance. Expression of junctional protein E-cadherin and ß-catenin was assessed by western blotting. The secretion of neutrophil attractant CXCL8 upon CSE exposure was measured by ELISA. RESULTS: FAM13A was strongly expressed in airway epithelium, but significantly weaker in airways of COPD patients compared to non-COPD controls. In COPD-derived AECs, but not those of controls, FAM13A was significantly downregulated by CSE. 16HBE14o- cells overexpressing FAM13A built up epithelial resistance significantly more rapidly, which was accompanied by higher E-cadherin expression and reduced CSE-induced CXCL8 levels. CONCLUSION: Our data indicate that the expression of FAM13A is lower in airway epithelium of COPD patients compared to non-COPD controls. In addition, cigarette smoking selectively downregulates airway epithelial expression of FAM13A in COPD patients. This may have important consequences for the pathophysiology of COPD, as the more rapid build-up of epithelial resistance upon FAM13A overexpression suggests improved (re)constitution of barrier function. The reduced epithelial secretion of CXCL8 upon CSE-induced damage suggests that lower FAM13A expression upon cigarette smoking may facilitate epithelial-driven neutrophilia.

9.
Clin Genet ; 97(4): 556-566, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31957011

RESUMO

NGLY1 encodes the enzyme N-glycanase that is involved in the degradation of glycoproteins as part of the endoplasmatic reticulum-associated degradation pathway. Variants in this gene have been described to cause a multisystem disease characterized by neuromotor impairment, neuropathy, intellectual disability, and dysmorphic features. Here, we describe four patients with pathogenic variants in NGLY1. As the clinical features and laboratory results of the patients suggested a multisystem mitochondrial disease, a muscle biopsy had been performed. Biochemical analysis in muscle showed a strongly reduced ATP production rate in all patients, while individual OXPHOS enzyme activities varied from normal to reduced. No causative variants in any mitochondrial disease genes were found using mtDNA analysis and whole exome sequencing. In all four patients, variants in NGLY1 were identified, including two unreported variants (c.849T>G (p.(Cys283Trp)) and c.1067A>G (p.(Glu356Gly)). Western blot analysis of N-glycanase in muscle and fibroblasts showed a complete absence of N-glycanase. One patient showed a decreased basal and maximal oxygen consumption rates in fibroblasts. Mitochondrial morphofunction fibroblast analysis showed patient specific differences when compared to control cell lines. In conclusion, variants in NGLY1 affect mitochondrial energy metabolism which in turn might contribute to the clinical disease course.


Assuntos
Epilepsias Mioclônicas/genética , Deficiência Intelectual/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Polineuropatias/genética , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico por imagem , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/patologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação/genética , Polineuropatias/diagnóstico por imagem , Polineuropatias/patologia
10.
Respir Res ; 20(1): 268, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791327

RESUMO

BACKGROUND: Active smoking is the main risk factor for COPD. Here, epigenetic mechanisms may play a role, since cigarette smoking is associated with differential DNA methylation in whole blood. So far, it is unclear whether epigenetics also play a role in subjects with COPD who never smoked. Therefore, we aimed to identify differential DNA methylation associated with lung function in never smokers. METHODS: We determined epigenome-wide DNA methylation levels of 396,243 CpG-sites (Illumina 450 K) in blood of never smokers in four independent cohorts, LifeLines COPD&C (N = 903), LifeLines DEEP (N = 166), Rotterdam Study (RS)-III (N = 150) and RS-BIOS (N = 206). We meta-analyzed the cohort-specific methylation results to identify differentially methylated CpG-sites with FEV1/FVC. Expression Quantitative Trait Methylation (eQTM) analysis was performed in the Biobank-based Integrative Omics Studies (BIOS). RESULTS: A total of 36 CpG-sites were associated with FEV1/FVC in never smokers at p-value< 0.0001, but the meta-analysis did not reveal any epigenome-wide significant CpG-sites. Of interest, 35 of these 36 CpG-sites have not been associated with lung function before in studies including subjects irrespective of smoking history. Among the top hits were cg10012512, cg02885771, annotated to the gene LTV1 Ribosome Biogenesis factor (LTV1), and cg25105536, annotated to Kelch Like Family Member 32 (KLHL32). Moreover, a total of 11 eQTMS were identified. CONCLUSIONS: With the identification of 35 CpG-sites that are unique for never smokers, our study shows that DNA methylation is also associated with FEV1/FVC in subjects that never smoked and therefore not merely related to smoking.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Estudo de Associação Genômica Ampla/métodos , Doença Pulmonar Obstrutiva Crônica/genética , Adulto , Estudos de Coortes , Ilhas de CpG/genética , Feminino , Volume Expiratório Forçado/genética , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Valores de Referência , Fumantes , Fumar/genética
11.
Hum Mol Genet ; 28(15): 2477-2485, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152171

RESUMO

Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2×)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted.


Assuntos
Metilação de DNA , Poeira , Gases/efeitos adversos , Regulação da Expressão Gênica , Exposição Ocupacional/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sangue , Feminino , Estudo de Associação Genômica Ampla , Humanos , Leucócitos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Adulto Jovem
13.
Eur Respir J ; 54(1)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31073081

RESUMO

Previous reports link differential DNA methylation (DNAme) to environmental exposures that are associated with lung function. Direct evidence on lung function DNAme is, however, limited. We undertook an agnostic epigenome-wide association study (EWAS) on pre-bronchodilation lung function and its change in adults.In a discovery-replication EWAS design, DNAme in blood and spirometry were measured twice, 6-15 years apart, in the same participants of three adult population-based discovery cohorts (n=2043). Associated DNAme markers (p<5×10-7) were tested in seven replication cohorts (adult: n=3327; childhood: n=420). Technical bias-adjusted residuals of a regression of the normalised absolute ß-values on control probe-derived principle components were regressed on level and change of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and their ratio (FEV1/FVC) in the covariate-adjusted discovery EWAS. Inverse-variance-weighted meta-analyses were performed on results from discovery and replication samples in all participants and never-smokers.EWAS signals were enriched for smoking-related DNAme. We replicated 57 lung function DNAme markers in adult, but not childhood samples, all previously associated with smoking. Markers not previously associated with smoking failed replication. cg05575921 (AHRR (aryl hydrocarbon receptor repressor)) showed the statistically most significant association with cross-sectional lung function (FEV1/FVC: pdiscovery=3.96×10-21 and pcombined=7.22×10-50). A score combining 10 DNAme markers previously reported to mediate the effect of smoking on lung function was associated with lung function (FEV1/FVC: p=2.65×10-20).Our results reveal that lung function-associated methylation signals in adults are predominantly smoking related, and possibly of clinical utility in identifying poor lung function and accelerated decline. Larger studies with more repeat time-points are needed to identify lung function DNAme in never-smokers and in children.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Fumar/genética , Adulto , Idoso , Ilhas de CpG , Feminino , Volume Expiratório Forçado , Humanos , Modelos Lineares , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Valores de Referência , Fumar/fisiopatologia , Espirometria
14.
ERJ Open Res ; 5(1)2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847352

RESUMO

In this article, early career members and experienced members of the Epidemiology and Environment Assembly of the European Respiratory Society highlight and summarise a selection of six sessions from the Society's annual congress, which in 2018 was held in Paris, France. The topics covered in these sessions span from cutting-edge molecular epidemiology of lung function to clinical, occupational and environmental epidemiology of respiratory disease, and from emergent tobacco products to tobacco control.

15.
J Inherit Metab Dis ; 42(3): 414-423, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30761551

RESUMO

Most infants with very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) identified by newborn screening (NBS) are asymptomatic at the time of diagnosis and remain asymptomatic. If this outcome is due to prompt diagnosis and initiation of therapy, or because of identification of individuals with biochemical abnormalities who will never develop symptoms, is unclear. Therefore, a 10-year longitudinal national cohort study of genetically confirmed VLCADD patients born before and after introduction of NBS was conducted. Main outcome measures were clinical outcome parameters, acyl-CoA dehydrogenase very long chain gene analysis, VLCAD activity, and overall capacity of long-chain fatty acid oxidation (LC-FAO flux) in lymphocytes and cultured skin fibroblasts. Median VLCAD activity in lymphocytes of 54 patients, 21 diagnosed pre-NBS and 33 by NBS was, respectively, 5.4% (95% confidence interval [CI]: 4.0-8.3) and 12.6% (95% CI: 10.7-17.7; P < 0.001) of the reference mean. The median LC-FAO flux was 33.2% (95% CI: 22.8-48.3) and 41% (95% CI: 40.8-68; P < 0.05) of the control mean, respectively. Clinical characteristics in 23 pre-NBS and 37 NBS patients revealed hypoglycemic events in 12 vs 2 patients, cardiomyopathy in 5 vs 4 patients and myopathy in 14 vs 3 patients. All patients with LC-FAO flux <10% developed symptoms. Of the patients with LC-FAO flux >10% 7 out of 12 diagnosed pre-NBS vs none by NBS experienced hypoglycemic events. NBS has a clear beneficial effect on the prevention of hypoglycemic events in patients with some residual enzyme activity, but does not prevent hypoglycemia nor cardiac complications in patients with very low residual enzyme activity. The effect of NBS on prevalence and prevention of myopathy-related complications remains unclear.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Síndrome Congênita de Insuficiência da Medula Óssea/diagnóstico , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Triagem Neonatal , Acil-CoA Desidrogenase de Cadeia Longa/genética , Feminino , Genótipo , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Países Baixos
16.
J Inherit Metab Dis ; 42(1): 159-168, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30740737

RESUMO

BACKGROUND: Patients with very long chain acyl-CoA dehydrogenase deficiency (VLCADD), a long chain fatty acid oxidation disorder, are traditionally treated with a long chain triglyceride (LCT) restricted and medium chain triglyceride (MCT) supplemented diet. Introduction of VLCADD in newborn screening (NBS) programs has led to the identification of asymptomatic newborns with VLCADD, who may have a more attenuated phenotype and may not need dietary adjustments. OBJECTIVE: To define dietary strategies for individuals with VLCADD based on the predicted phenotype. METHOD: We evaluated long-term dietary histories of a cohort of individuals diagnosed with VLCADD identified before the introduction of VLCADD in NBS and their beta-oxidation (LC-FAO) flux score (rate of oleate oxidation) in cultured skin fibroblasts in relation to the clinical outcome. Based on these results a dietary strategy is proposed. RESULTS: Sixteen individuals with VLCADD were included. One had an LC-FAO flux score >90%, was not on a restricted diet and is asymptomatic to date. Four patients had an LC-FAO flux score <10%, and significant VLCADD related symptoms despite the use of strict diets including LCT restriction, MCT supplementation and nocturnal gastric drip feeding. Patients with an LC-FAO flux score between 10 and 90% (n = 11) showed a more heterogeneous phenotype. CONCLUSIONS: This study shows that a strict diet cannot prevent poor clinical outcome in severely affected patients and that the LC-FAO flux is a good predictor of clinical outcome in individuals with VLCADD identified before its introduction in NBS. Hereby, we propose an individualized dietary strategy based on the LC-FAO flux score.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Acil-CoA Desidrogenase/deficiência , Síndrome Congênita de Insuficiência da Medula Óssea/tratamento farmacológico , Erros Inatos do Metabolismo Lipídico/tratamento farmacológico , Doenças Mitocondriais/tratamento farmacológico , Doenças Musculares/tratamento farmacológico , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Dieta , Ácidos Graxos/administração & dosagem , Feminino , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/metabolismo , Masculino , Doenças Mitocondriais/metabolismo , Doenças Musculares/metabolismo , Triagem Neonatal/métodos , Fenótipo , Triglicerídeos/administração & dosagem
17.
Respir Res ; 19(1): 212, 2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390659

RESUMO

BACKGROUND: Genetic and environmental factors play a role in the development of COPD. The epigenome, and more specifically DNA methylation, is recognized as important link between these factors. We postulate that DNA methylation is one of the routes by which cigarette smoke influences the development of COPD. In this study, we aim to identify CpG-sites that are associated with cigarette smoke exposure and lung function levels in whole blood and validate these CpG-sites in lung tissue. METHODS: The association between pack years and DNA methylation was studied genome-wide in 658 current smokers with >5 pack years using robust linear regression analysis. Using mediation analysis, we subsequently selected the CpG-sites that were also associated with lung function levels. Significant CpG-sites were validated in lung tissue with pyrosequencing and expression quantitative trait methylation (eQTM) analysis was performed to investigate the association between DNA methylation and gene expression. RESULTS: 15 CpG-sites were significantly associated with pack years and 10 of these were additionally associated with lung function levels. We validated 5 CpG-sites in lung tissue and found several associations between DNA methylation and gene expression. CONCLUSION: This study is the first to validate a panel of CpG-sites that are associated with cigarette smoking and lung function levels in whole blood in the tissue of interest: lung tissue.


Assuntos
Fumar Cigarros/sangue , Fumar Cigarros/genética , Metilação de DNA/fisiologia , Estudo de Associação Genômica Ampla/métodos , Pulmão/fisiologia , Fumantes , Adulto , Idoso , Fumar Cigarros/efeitos adversos , Ilhas de CpG/fisiologia , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
BMJ Open Respir Res ; 5(1): e000282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018765

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease with cigarette smoke as the main risk factor for its development. Since not every smoker develops COPD, other factors likely underlie differences in susceptibility to develop COPD. Here, we tested if DNA methylation may be such a factor by assessing the association between DNA methylation levels and COPD in never and current smokers from the general population. METHODS: For the current study, 1561 subjects were non-randomly selected from the LifeLines cohort study. We included 903 never smokers and 658 current smokers with and without COPD, defined as pre-bronchodilator forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) <70%. Subsequently, we performed robust regression analysis on whole blood DNA methylation levels of 420 938 CpG sites with COPD as outcome. RESULTS: None of the CpG sites in both the never and the current smokers were genome-wide significantly associated with COPD. CpG site cg14972228 annotated to SIPAL3 was most significant (p=5.66×10-6) in the never smokers, while CpG site cg08282037 annotated to EPS8L1 was most significant (p=1.45×10-5) in the current smokers. CONCLUSION: In contrast to a previous, smaller study, we did not observe any significant association between DNA methylation levels and the presence of COPD, independent of smoking status. Apparently, DNA methylation studies are highly variable.

19.
Occup Environ Med ; 75(6): 427-435, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29459480

RESUMO

OBJECTIVES: Occupational pesticide exposure is associated with a wide range of diseases, including lung diseases, but it is largely unknown how pesticides influence airway disease pathogenesis. A potential mechanism might be through epigenetic mechanisms, like DNA methylation. Therefore, we assessed associations between occupational exposure to pesticides and genome-wide DNA methylation sites. METHODS: 1561 subjects of LifeLines were included with either no (n=1392), low (n=108) or high (n=61) exposure to any type of pesticides (estimated based on current or last held job). Blood DNA methylation levels were measured using Illumina 450K arrays. Associations between pesticide exposure and 420 938 methylation sites (CpGs) were assessed using robust linear regression adjusted for appropriate confounders. In addition, we performed genome-wide stratified and interaction analyses by gender, smoking and airway obstruction status, and assessed associations between gene expression and methylation for genome-wide significant CpGs (n=2802). RESULTS: In total for all analyses, high pesticide exposure was genome-wide significantly (false discovery rate P<0.05) associated with differential DNA methylation of 31 CpGs annotated to 29 genes. Twenty of these CpGs were found in subjects with airway obstruction. Several of the identified genes, for example, RYR1, ALLC, PTPRN2, LRRC3B, PAX2 and VTRNA2-1, are genes previously linked to either pesticide exposure or lung-related diseases. Seven out of 31 CpGs were associated with gene expression levels. CONCLUSIONS: We show for the first time that occupational exposure to pesticides is genome-wide associated with differential DNA methylation. Further research should reveal whether this differential methylation plays a role in the airway disease pathogenesis induced by pesticides.


Assuntos
Ilhas de CpG , Metilação de DNA , Exposição Ocupacional/efeitos adversos , Praguicidas/toxicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Epigênese Genética , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Adulto Jovem
20.
PLoS One ; 11(10): e0163967, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27701444

RESUMO

BACKGROUND: The asthma gene PCDH1 encodes Protocadherin-1, a putative adhesion molecule of unknown function expressed in the airway epithelium. Here, we characterize the localization, differential expression, homotypic adhesion specificity and function of PCDH1 in airway epithelial cells in asthma. METHODS: We performed confocal fluorescence microscopy to determine subcellular localization of PCDH1 in 16HBE cells and primary bronchial epithelial cells (PBECs) grown at air-liquid interface. Next, to compare PCDH1 expression and localization in asthma and controls we performed qRT-PCR and fluorescence microscopy in PBECs and immunohistochemistry on airway wall biopsies. We examined homotypic adhesion specificity of HEK293T clones overexpressing fluorescently tagged-PCDH1 isoforms. Finally, to evaluate the role for PCDH1 in epithelial barrier formation and repair, we performed siRNA knockdown-studies and measured epithelial resistance. RESULTS: PCDH1 localized to the cell membrane at cell-cell contact sites, baso-lateral to adherens junctions, with increasing expression during epithelial differentiation. No differences in gene expression or localization of PCDH1 isoforms expressing the extracellular domain were observed in either PBECs or airway wall biopsies between asthma patients and controls. Overexpression of PCDH1 mediated homotypic interaction, whereas downregulation of PCDH1 reduced epithelial barrier formation, and impaired repair after wounding. CONCLUSIONS: In conclusion, PCDH1 is localized to the cell membrane of bronchial epithelial cells baso-lateral to the adherens junction. Expression of PCDH1 is not reduced nor delocalized in asthma even though PCDH1 contributes to homotypic adhesion, epithelial barrier formation and repair.


Assuntos
Asma/metabolismo , Brônquios/citologia , Caderinas/genética , Caderinas/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Junções Aderentes/metabolismo , Idoso , Asma/genética , Brônquios/metabolismo , Adesão Celular , Células Epiteliais/citologia , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Protocaderinas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA