Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 31: 100873, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782614

RESUMO

Isolated long-chain 3-keto-acyl CoA thiolase (LCKAT) deficiency is a rare long-chain fatty acid oxidation disorder caused by mutations in HADHB. LCKAT is part of a multi-enzyme complex called the mitochondrial trifunctional protein (MTP) which catalyzes the last three steps in the long-chain fatty acid oxidation. Until now, only three cases of isolated LCKAT deficiency have been described. All patients developed a severe cardiomyopathy and died before the age of 7 weeks. Here, we describe a newborn with isolated LCKAT deficiency, presenting with neonatal-onset cardiomyopathy, rhabdomyolysis, hypoglycemia and lactic acidosis. Bi-allelic 185G > A (p.Arg62His) and c1292T > C (p.Phe431Ser) mutations were found in HADHB. Enzymatic analysis in both lymphocytes and cultured fibroblasts revealed LCKAT deficiency with a normal long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD, also part of MTP) enzyme activity. Clinically, the patient showed recurrent cardiomyopathy, which was monitored by speckle tracking echocardiography. Subsequent treatment with special low-fat formula, low in long chain triglycerides (LCT) and supplemented with medium chain triglycerides (MCT) and ketone body therapy in (sodium-D,L-3-hydroxybutyrate) was well tolerated and resulted in improved carnitine profiles and cardiac function. Resveratrol, a natural polyphenol that has been shown to increase fatty acid oxidation, was also considered as a potential treatment option but showed no in vitro benefits in the patient's fibroblasts. Even though our patient deceased at the age of 13 months, early diagnosis and prompt initiation of dietary management with addition of sodium-D,L-3-hydroxybutyrate may have contributed to improved cardiac function and a much longer survival when compared to the previously reported cases of isolated LCKAT-deficiency.

2.
J Inherit Metab Dis ; 45(5): 952-962, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35722880

RESUMO

Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism.


Assuntos
Fenilcetonúrias , Tirosinemias , Criança , Humanos , Masculino , Saúde Mental , Redes e Vias Metabólicas , Testes Neuropsicológicos , Tirosinemias/genética
3.
J Neurol Sci ; 326(1-2): 24-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23343605

RESUMO

Coenzyme Q10 (ubiquinone or CoQ10) serves as a redox carrier in the mitochondrial oxidative phosphorylation system. The reduced form of this lipid-soluble antioxidant (ubiquinol) is involved in other metabolic processes as well, such as preventing reactive oxygen species (ROS) induced damage from the mitochondrial membrane. Primary coenzyme Q10 deficiency is a rare, autosomal recessive disorder, often presenting with neurological and/or muscle involvement. Until now, five patients from four families have been described with primary coenzyme Q10 deficiency due to mutations in COQ2 encoding para-hydroxybenzoate polyprenyl transferase. Interestingly, four of these patients showed a distinctive renal involvement (focal segmental glomerular sclerosis, crescentic glomerulonephritis, nephrotic syndrome), which is only very rarely seen in correlation with mitochondrial disorders. The fifth patient deceases due to infantile multi organ failure, also with renal involvement. Here we report a novel homozygous mutation in COQ2 (c.905C>T, p.Ala302Val) in a dizygotic twin from consanguineous Turkish parents. The children were born prematurely and died at the age of five and six months, respectively, after an undulating disease course involving apneas, seizures, feeding problems and generalized edema, alternating with relative stable periods without the need of artificial ventilation. There was no evidence for renal involvement. We would like to raise awareness for this potentially treatable disorder which could be under diagnosed in patients with fatal neonatal or infantile multi-organ disease.


Assuntos
Alquil e Aril Transferases/deficiência , Alquil e Aril Transferases/genética , Doenças em Gêmeos/genética , Doenças Metabólicas/genética , Insuficiência de Múltiplos Órgãos/genética , Mutação/genética , Sequência de Aminoácidos , Doenças em Gêmeos/diagnóstico , Doenças em Gêmeos/enzimologia , Evolução Fatal , Feminino , Homozigoto , Humanos , Lactente , Masculino , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/enzimologia , Dados de Sequência Molecular , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/enzimologia
4.
Brain ; 132(Pt 1): 136-46, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19015156

RESUMO

The heterogeneous group of 3-methylglutaconic aciduria type IV consists of patients with various organ involvement and mostly progressive neurological impairment in combination with 3-methylglutaconic aciduria and biochemical features of dysfunctional oxidative phosphorylation. Here we describe the clinical and biochemical phenotype in 18 children and define 4 clinical subgroups (encephalomyopathic, hepatocerebral, cardiomyopathic, myopathic). In the encephalomyopathic group with neurodegenerative symptoms and respiratory chain complex I deficiency, two of the children, presenting with mild Methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness, harboured SUCLA2 mutations. In children with a hepatocerebral phenotype most patients presented with complex I deficiency and mtDNA-depletion, three of which carried POLG1-mutations. In the cardiomyopathic subgroup most patients had complex V deficiency and an overlapping phenotype with that previously described in isolated complex V deficiency, in three patients a TMEM70 mutation was confirmed. In one male with a pure myopathic form and severe combined respiratory chain disorder, based on the pathogenomic histology of central core disease, RYR1 mutations were detected. In our patient group the presence of the biochemical marker 3-methylglutaconic acid was indicative for nuclear coded respiratory chain disorders. By delineating patient-groups we elucidated the genetic defect in 10 out of 18 children. Depending on the clinical and biochemical phenotype we suggest POLG1, SUCLA2, TMEM70 and RYR1 sequence analysis and mtDNA-depletion studies in children with 3-methylglutaconic aciduria type IV.


Assuntos
Glutaratos/urina , Erros Inatos do Metabolismo/diagnóstico , Adenosina Trifosfatases/deficiência , Encéfalo/patologia , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/urina , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/urina , Proteínas de Transporte , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , Fácies , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/urina , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/urina , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras , Mutação , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
5.
Pediatr Res ; 65(1): 103-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19096353

RESUMO

Besides characteristic neurologic and musculoskeletal symptoms, children with mitochondrial dysfunction often present with feeding problems and failure to thrive. Substrate depletion for the respiratory chain has an effect on energy expenditure. Secondary mitochondrial dysfunction has been reported in severe chronic malnutrition. We evaluated the nutritional state, the growth parameters, and the metabolic condition in 172 children undergoing muscle biopsy for a suspected disorder of the oxidative phosphorylation system (OXPHOS). We performed dietary evaluation and initiated nutritional intervention when needed before the biopsy. Mitochondrial dysfunction was confirmed by detection of enzyme-complex deficiencies and/or by mutations in 83 children, in 14 patients no biochemical abnormalities were found. In the whole study group, and in the subgroup with enzyme-complex deficiency and/or mutation, a significant correlation was found between the mitochondrial production of adenosine triphosphate (ATP) and the age-related body mass index (BMI). Nutritional state and growth should be considered by interpreting the results of ATP-production in fresh muscle biopsy. Because of a positive correlation between the age-appropriate BMI and the ATP-production, we strongly advise optimizing the nutritional state preceding the muscle biopsy in children with a suspected OXPHOS-disorder. Dietary intervention remains although challenging because of frequent gastrointestinal problems and eating disorders.


Assuntos
Trifosfato de Adenosina/metabolismo , Índice de Massa Corporal , Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Doenças Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Adolescente , Fatores Etários , Biópsia , Criança , Pré-Escolar , Doença Crônica , Ingestão de Energia , Metabolismo Energético/genética , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Desnutrição/complicações , Desnutrição/metabolismo , Desnutrição/fisiopatologia , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/patologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/fisiopatologia , Doenças Mitocondriais/terapia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Mutação , Estado Nutricional , Fosforilação Oxidativa , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA