Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892327

RESUMO

The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications.


Assuntos
Basidiomycota , Lignina , Fungos/metabolismo , Lignina/metabolismo , Polyporales
2.
J Biotechnol ; 308: 35-39, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31778732

RESUMO

Heterologous production of fungal ligninolytic cocktails is challenging due to the low yields of catalytically active lignin modifying peroxidases. Production using a natural system, such as a wood-rotting fungus, is a promising alternative if specific or preferential induction of the ligninolytic activities could be achieved. Using transcriptomics, gene expression of the white-rot Dichomitus squalens during growth on mixtures of aromatic compounds, with ring structures representing the two major lignin sub-units, was compared to a wood substrate. Most of the genes encoding lignin modifying enzymes (laccases and peroxidases) categorised as highly or moderately expressed on wood were expressed similarly on aromatic compounds. Higher expression levels of a subset of manganese and versatile peroxidases was observed on di- compared to mono-methoxylated aromatics. The expression of polysaccharide degrading enzymes was lower on aromatic compounds compared to wood, demonstrating that the induction of lignin modifying enzymes became more specific. This study suggests potential for aromatic waste streams, e.g. from lignocellulose pretreatment, to produce a lignin-specific enzyme cocktail from D. squalens or other white-rot fungi.


Assuntos
Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Hidrocarbonetos Aromáticos/farmacologia , Polyporaceae/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hidrocarbonetos Aromáticos/química , Lacase/genética , Lignina/metabolismo , Peroxidases/genética , Polyporaceae/metabolismo , Madeira/química , Madeira/microbiologia
3.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585998

RESUMO

The extent of carbon catabolite repression (CCR) at a global level is unknown in wood-rotting fungi, which are critical to the carbon cycle and are a source of biotechnological enzymes. CCR occurs in the presence of sufficient concentrations of easily metabolizable carbon sources (e.g., glucose) and involves downregulation of the expression of genes encoding enzymes involved in the breakdown of complex carbon sources. We investigated this phenomenon in the white-rot fungus Dichomitus squalens using transcriptomics and exoproteomics. In D. squalens cultures, approximately 7% of genes were repressed in the presence of glucose compared to Avicel or xylan alone. The glucose-repressed genes included the essential components for utilization of plant biomass-carbohydrate-active enzyme (CAZyme) and carbon catabolic genes. The majority of polysaccharide-degrading CAZyme genes were repressed and included activities toward all major carbohydrate polymers present in plant cell walls, while repression of ligninolytic genes also occurred. The transcriptome-level repression of the CAZyme genes observed on the Avicel cultures was strongly supported by exoproteomics. Protease-encoding genes were generally not glucose repressed, indicating their likely dominant role in scavenging for nitrogen rather than carbon. The extent of CCR is surprising, given that D. squalens rarely experiences high free sugar concentrations in its woody environment, and it indicates that biotechnological use of D. squalens for modification of plant biomass would benefit from derepressed or constitutively CAZyme-expressing strains.IMPORTANCE White-rot fungi are critical to the carbon cycle because they can mineralize all wood components using enzymes that also have biotechnological potential. The occurrence of carbon catabolite repression (CCR) in white-rot fungi is poorly understood. Previously, CCR in wood-rotting fungi has only been demonstrated for a small number of genes. We demonstrated widespread glucose-mediated CCR of plant biomass utilization in the white-rot fungus Dichomitus squalens This indicates that the CCR mechanism has been largely retained even though wood-rotting fungi rarely experience commonly considered CCR conditions in their woody environment. The general lack of repression of genes encoding proteases along with the reduction in secreted CAZymes during CCR suggested that the retention of CCR may be connected with the need to conserve nitrogen use during growth on nitrogen-scarce wood. The widespread repression indicates that derepressed strains could be beneficial for enzyme production.


Assuntos
Repressão Catabólica , Glucose/metabolismo , Polyporaceae/metabolismo , Madeira/microbiologia
4.
ACS Sustain Chem Eng ; 6(3): 2878-2882, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30271687

RESUMO

Production of value-added compounds from a renewable aromatic polymer, lignin, has proven to be challenging. Chemical procedures, involving harsh reaction conditions, are costly and often result in nonselective degradation of lignin linkages. Therefore, enzymatic catalysis with selective cleavage of lignin bonds provides a sustainable option for lignin valorization. In this study, we describe the first functionally characterized fungal intracellular ß-etherase from the wood-degrading white-rot basidiomycete Dichomitus squalens. This enzyme, Ds-GST1, from the glutathione-S-transferase superfamily selectively cleaved the ß-O-4 aryl ether bond of a dimeric lignin model compound in a glutathione-dependent reaction. Ds-GST1 also demonstrated activity on polymeric synthetic lignin fractions, shown by a decrease in molecular weight distribution of the laccase-oxidized guaiacyl dehydrogenation polymer. In addition to a possible role of Ds-GST1 in intracellular catabolism of lignin-derived aromatic compounds, the cleavage of the most abundant linkages in lignin under mild reaction conditions makes this biocatalyst an attractive green alternative in biotechnological applications.

5.
J Basic Microbiol ; 58(11): 957-967, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30168857

RESUMO

The physiological background of the unusually high cadmium tolerance (MIC50 > 2 mM) of Aspergillus fumigatus Af293 was investigated. The cadmium tolerance of the tested environmental and clinical A. fumigatus strains varied over a wide range (0.25 mM < MIC50 < 1 mM). Only the Af293 strain showed a MIC50 value of >2 mM, and this phenotype was accompanied by increased in vivo virulence in mice. A strong correlation was found between the cadmium tolerance and the transcription of the pcaA gene, which encodes a putative cadmium efflux pump. The cadmium tolerance also correlated with the iron tolerance and the extracellular siderophore production of the strains. In addition to these findings, Af293 did not show the synergism between iron toxicity and cadmium toxicity that was detected in the other strains. Based on these results, we suggest that the primary function of PcaA should be acting as a ferrous iron pump and protecting cells from iron overload. Nevertheless, the heterologous expression of pcaA may represent an attractive strain improvement strategy to construct fungal strains for use in biosorption or biomining processes or to prevent accumulation of this toxic metal in crops.


Assuntos
Aspergillus fumigatus/fisiologia , Cádmio/metabolismo , Adenosina Trifosfatases/genética , Animais , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Feminino , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Ferro/metabolismo , Ferro/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Sideróforos/biossíntese , Transcrição Gênica , Virulência
6.
Environ Microbiol ; 20(11): 4141-4156, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30246402

RESUMO

White-rot fungi, such as Dichomitus squalens, degrade all wood components and inhabit mixed-wood forests containing both soft- and hardwood species. In this study, we evaluated how D. squalens responded to the compositional differences in softwood [guaiacyl (G) lignin and higher mannan content] and hardwood [syringyl/guaiacyl (S/G) lignin and higher xylan content] using semi-natural solid cultures. Spruce (softwood) and birch (hardwood) sticks were degraded by D. squalens as measured by oxidation of the lignins using 2D-NMR. The fungal response as measured by transcriptomics, proteomics and enzyme activities showed a partial tailoring to wood composition. Mannanolytic transcripts and proteins were more abundant in spruce cultures, while a proportionally higher xylanolytic activity was detected in birch cultures. Both wood types induced manganese peroxidases to a much higher level than laccases, but higher transcript and protein levels of the manganese peroxidases were observed on the G-lignin rich spruce. Overall, the molecular responses demonstrated a stronger adaptation to the spruce rather than birch composition, possibly because D. squalens is mainly found degrading softwoods in nature, which supports the ability of the solid wood cultures to reflect the natural environment.


Assuntos
Basidiomycota/metabolismo , Polyporaceae/metabolismo , Madeira/química , Basidiomycota/enzimologia , Basidiomycota/genética , Betula/química , Betula/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lacase/genética , Lacase/metabolismo , Lignina/química , Lignina/metabolismo , Mananas/química , Mananas/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Picea/química , Picea/microbiologia , Madeira/microbiologia
7.
Mycologia ; 110(2): 316-324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843575

RESUMO

A novel fungal species able to synthesize enzymes with potential synergistic actions in lignocellulose conversion was isolated from the biomass of Arundo donax during biodegradation under natural conditions in the Gussone Park of the Royal Palace of Portici (Naples, Italy). In this work, this species was subjected to morphological and phylogenetic analyses. Sequencing of its genome was performed, resulting in 28 scaffolds that were assembled into 27.05 Mb containing 9744 predicted genes, among which 396 belong to carbohydrate-active enzyme (CAZyme)-encoding genes. Here we describe and illustrate this previously unknown species, which was named Talaromyces borbonicus, by a polyphasic approach combining phenotypic, physiological, and sequence data.


Assuntos
Lignina/metabolismo , Poaceae/microbiologia , Talaromyces/classificação , Talaromyces/isolamento & purificação , Biotransformação , Metabolismo dos Carboidratos , Enzimas/genética , Genoma Fúngico , Itália , Filogenia , Análise de Sequência de DNA , Talaromyces/genética , Talaromyces/metabolismo
8.
Fungal Genet Biol ; 112: 47-54, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28754284

RESUMO

The basidiomycete white-rot fungus Obba rivulosa, a close relative of Gelatoporia (Ceriporiopsis) subvermispora, is an efficient degrader of softwood. The dikaryotic O. rivulosa strain T241i (FBCC949) has been shown to selectively remove lignin from spruce wood prior to depolymerization of plant cell wall polysaccharides, thus possessing potential in biotechnological applications such as pretreatment of wood in pulp and paper industry. In this work, we studied the time-course of the conversion of spruce by the genome-sequenced monokaryotic O. rivulosa strain 3A-2, which is derived from the dikaryon T241i, to get insight into transcriptome level changes during prolonged solid state cultivation. During 8-week cultivation, O. rivulosa expressed a constitutive set of genes encoding putative plant cell wall degrading enzymes. High level of expression of the genes targeted towards all plant cell wall polymers was detected at 2-week time point, after which majority of the genes showed reduced expression. This implicated non-selective degradation of lignin by the O. rivulosa monokaryon and suggests high variation between mono- and dikaryotic strains of the white-rot fungi with respect to their abilities to convert plant cell wall polymers.


Assuntos
Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Hidrolases/biossíntese , Células Vegetais/metabolismo , Polyporales/enzimologia , Polyporales/crescimento & desenvolvimento , Madeira/microbiologia , Perfilação da Expressão Gênica , Hidrolases/genética , Lignina/metabolismo , Polyporales/genética
9.
J Microbiol Methods ; 143: 38-43, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28987554

RESUMO

D. squalens, a white-rot fungus that efficiently degrades lignocellulose in nature, can be used in various biotechnological applications and has several strains with sequenced and annotated genomes. Here we present a method for the transformation of this basidiomycete fungus, using a recently introduced commercial ascomycete protoplasting enzyme cocktail, Protoplast F. In protoplasting of D. squalens mycelia, Protoplast F outperformed two other cocktails while releasing similar amounts of protoplasts to a third cocktail. The protoplasts released using Protoplast F had a regeneration rate of 12.5% (±6 SE). Using Protoplast F, the D. squalens monokaryon CBS464.89 was conferred with resistance to the antibiotics hygromycin and G418 via polyethylene glycol mediated protoplast transformation with resistance cassettes expressing the hygromycin phosphotransferase (hph) and neomycin phosphotransferase (nptII) genes, respectively. The hph gene was expressed in D. squalens using heterologous promoters from genes encoding ß-tubulin or glyceraldehyde 3-phosphate dehydrogenase. A Southern blot confirmed integration of a resistance cassette into the D. squalens genome. An average of six transformants (±2 SE) were obtained when at least several million protoplasts were used (a transformation efficiency of 0.8 (±0.3 SE) transformants per µg DNA). Transformation of D. squalens demonstrates the suitability of the Protoplast F cocktail for basidiomycete transformation and furthermore can facilitate understanding of basidiomycete gene function and development of improved strains for biotechnological applications.


Assuntos
Técnicas de Transferência de Genes , Polyporaceae/genética , Protoplastos , Transformação Genética , Farmacorresistência Fúngica , Expressão Gênica , Humanos , Canamicina Quinase/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Regiões Promotoras Genéticas , Tubulina (Proteína)/genética
10.
Genome Biol ; 18(1): 28, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196534

RESUMO

BACKGROUND: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.


Assuntos
Adaptação Biológica , Aspergillus/classificação , Aspergillus/genética , Biodiversidade , Genoma Fúngico , Genômica , Aspergillus/metabolismo , Biomassa , Carbono/metabolismo , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Metilação de DNA , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genômica/métodos , Humanos , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Família Multigênica , Oxirredutases/metabolismo , Filogenia , Plantas/metabolismo , Plantas/microbiologia , Metabolismo Secundário/genética , Transdução de Sinais , Estresse Fisiológico/genética
11.
Environ Microbiol ; 19(3): 1237-1250, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28028889

RESUMO

The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi, (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study, we evaluated how well the enzymatic machinery of the white-rot fungus Dichomitus squalens is tailored to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analyzed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good a match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant biomass types not present in its natural habitat.


Assuntos
Proteínas Fúngicas/genética , Polyporaceae/genética , Madeira/microbiologia , Biomassa , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Picea/metabolismo , Picea/microbiologia , Polyporaceae/crescimento & desenvolvimento , Polyporaceae/isolamento & purificação , Polyporaceae/metabolismo , Transcriptoma , Madeira/metabolismo
12.
Genome Announc ; 4(5)2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634999

RESUMO

We report here the first genome sequence of the white-rot fungus Obba rivulosa (Polyporales, Basidiomycota), a polypore known for its lignin-decomposing ability. The genome is based on the homokaryon 3A-2 originating in Finland. The genome is typical in size and carbohydrate active enzyme (CAZy) content for wood-decomposing basidiomycetes.

13.
IMA Fungus ; 7(1): 155-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27433445

RESUMO

The order Magnaporthales comprises about 200 species and includes the economically and scientifically important rice blast fungus and the take-all pathogen of cereals, as well as saprotrophs and endophytes. Recent advances in phylogenetic analyses of these fungi resulted in taxonomic revisions. In this paper we list the 28 currently accepted genera in Magnaporthales with their type species and available gene and genome resources. The polyphyletic Magnaporthe 1972 is proposed for suppression, and Pyricularia 1880 and Nakataea 1939 are recommended for protection as the generic names for the rice blast fungus and the rice stem rot fungus, respectively. The rationale for the recommended names is also provided. These recommendations are made by the Pyricularia/Magnaporthe Working Group established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF).

14.
BMC Genomics ; 13: 444, 2012 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-22937793

RESUMO

BACKGROUND: Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. RESULTS: P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. CONCLUSIONS: The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.


Assuntos
Genômica/métodos , Phanerochaete/genética , Polyporaceae/genética , Madeira/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Glicosídeo Hidrolases/genética , Phanerochaete/enzimologia , Polyporaceae/enzimologia
15.
Fungal Genet Biol ; 45 Suppl 1: S63-70, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18456523

RESUMO

Ustilago maydis establishes a biotrophic relationship with its host plant, i.e. plant cells stay alive despite massive fungal growth in infected tissue. The genome sequence has revealed that U. maydis is poorly equipped with plant cell wall degrading enzymes and uses novel secreted protein effectors as crucial determinants for biotrophic development. Many of these effector genes are clustered and differentially regulated during plant colonization. In this review, we analyze the secretome of U. maydis by differentiating between secreted enzymes, likely structural proteins of the fungal cell wall (excluding GPI-anchored proteins) as well as likely effectors with either apoplastic or cytoplasmic function. This classification is based on the presence of functional domains, general domain structure and cysteine pattern. In addition, we discuss possible functions of selected protein classes with a special focus on disease development.


Assuntos
Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Ustilago/metabolismo , Zea mays/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Ustilago/genética , Ustilago/crescimento & desenvolvimento
16.
J Plant Physiol ; 165(1): 29-40, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17905472

RESUMO

The fungus Ustilago maydis is a biotrophic pathogen parasitizing on maize. The most prominent symptoms of the disease are large tumors in which fungal proliferation and spore differentiation occur. In this study, we have analyzed early and late tumor stages by confocal microscopy. We show that fungal differentiation occurs both within plant cells as well as in cavities where huge aggregates of fungal mycelium develop. U. maydis is poorly equipped with plant CWDEs and we demonstrate by array analysis that the respective genes follow distinct expression profiles at early and late stages of tumor development. For the set of three genes coding for pectinolytic enzymes, deletion mutants were generated by gene replacement. Neither single nor triple mutants were affected in pathogenic development. Based on our studies, we consider it unlikely that U. maydis feeds on carbohydrates derived from the digestion of plant cell wall material, but uses its set of plant CWDEs for softening the cell wall structure as a prerequisite for in planta growth.


Assuntos
Doenças das Plantas/microbiologia , Ustilago/fisiologia , Zea mays/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Interações Hospedeiro-Patógeno , Microscopia Confocal , Pectinas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/microbiologia
17.
Eukaryot Cell ; 2(4): 690-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12912888

RESUMO

D-Mannitol is the predominant carbon compound in conidiospores of the filamentous fungus Aspergillus niger and makes up 10 to 15% of the dry weight. A number of physiological functions have been ascribed to mannitol, including serving as a reserve carbon source, as an antioxidant, and to store reducing power. In this study, we cloned and characterized the A. niger mpdA gene, which encodes mannitol 1-phosphate dehydrogenase (MPD), the first enzyme in the mannitol biosynthesis pathway. The mpdA promoter contains putative binding sites for the development-specific transcription factors BRLA and ABAA. Furthermore, increased expression of mpdA in sporulating mycelium suggests that mannitol biosynthesis is, to a certain extent, developmentally regulated in A. niger. Inactivation of mpdA abolished mannitol biosynthesis in growing mycelium and reduced the mannitol level in conidiospores to 30% that in the wild type, indicating that MPD and mannitol 1-phosphate phosphatase form the major metabolic pathway for mannitol biosynthesis in A. niger. The viability of spores after prolonged storage and germination kinetics were normal in an mpdA null mutant, indicating that mannitol does not play an essential role as a reserve carbon source in A. niger conidia. However, conidiospores of a DeltampdA strain were extremely sensitive to a variety of stress conditions, including high temperature, oxidative stress and, to a lesser extent, freezing and lyophilization. Since mannitol supplied in the medium during sporulation repaired this deficiency, mannitol appears to be essential for the protection of A. niger spores against cell damage under these stress conditions.


Assuntos
Aspergillus niger/metabolismo , Manitol/metabolismo , Esporos Fúngicos/metabolismo , Sítios de Ligação/genética , Morte Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Metabolismo Energético/fisiologia , Proteínas Fúngicas/metabolismo , Genes Reguladores/genética , Dados de Sequência Molecular , Mutação/genética , Estresse Oxidativo/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Regiões Promotoras Genéticas/genética , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/isolamento & purificação , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA