RESUMO
Functional analyses are the main method to classify mismatch repair (MMR) gene variants of uncertain significance (VUSs). However, the pathogenicity remains unclear for many variants because of conflicting results between clinical, molecular, and functional data. In this study, we evaluated whether whole exome sequencing (WES) could add another layer of evidence to elucidate the pathogenicity of MMR variants with conflicting interpretations. WES was performed on formalin-fixed paraffin-embedded tumor tissue of eight patients with a constitutional MMR VUS (seven families), including eight colorectal and two endometrial carcinomas and one ovarian carcinoma. Cell-free CIMRA assays were performed to assign Odds of Pathogenicity to these VUSs. In four families, seven tumors showed MMR deficiency-associated mutational signatures, supporting the pathogenicity of the VUS. Moreover, somatic (second) MMR hits identified in the WES data were found to explain MMR staining patterns when the MMR staining was discordant with the reported germline MMR gene variant. In conclusion, WES did not significantly reclassify VUS in these cases but clarified some phenotypic aspects such as age of onset and explanations in case of discordant MMR stainings.
RESUMO
By replicating damaged nucleotides, error-prone DNA translesion synthesis (TLS) enables the completion of replication, albeit at the expense of fidelity. TLS of helix-distorting DNA lesions, that usually have reduced capacity of basepairing, comprises insertion opposite the lesion followed by extension, the latter in particular by polymerase ζ (Pol ζ). However, little is known about involvement of Pol ζ in TLS of non- or poorly-distorting, but miscoding, lesions such as O6-methyldeoxyguanosine (O6-medG). Using purified Pol ζ we describe that the enzyme can misincorporate thymidine opposite O6-medG and efficiently extend from terminal mismatches, suggesting its involvement in the mutagenicity of O6-medG. Surprisingly, O6-medG lesions induced by the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) appeared more, rather than less, mutagenic in Pol ζ-deficient mouse embryonic fibroblasts (MEFs) than in wild type MEFs. This suggested that in vivo Pol ζ participates in non-mutagenic TLS of O6-medG. However, we found that the Pol ζ-dependent misinsertions at O6-medG lesions are efficiently corrected by DNA mismatch repair (MMR), which masks the error-proneness of Pol ζ. We also found that the MNNG-induced mutational signature is determined by the adduct spectrum, and modulated by MMR. The signature mimicked single base substitution signature 11 in the catalogue of somatic mutations in cancer, associated with treatment with the methylating drug temozolomide. Our results unravel the individual roles of the major contributors to methylating drug-induced mutagenesis. Moreover, these results warrant caution as to the classification of TLS as mutagenic or error-free based on in vitro data or on the analysis of mutations induced in MMR-proficient cells.
Assuntos
Reparo de Erro de Pareamento de DNA , DNA Polimerase Dirigida por DNA , Metilnitronitrosoguanidina , Animais , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Camundongos , Metilnitronitrosoguanidina/toxicidade , Mutagênese , Guanina/análogos & derivados , Guanina/metabolismo , Dano ao DNA , Metilação de DNA , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Replicação do DNA , DNA/metabolismo , Síntese de DNA TranslesãoRESUMO
Diagnosis of Lynch syndrome (LS) caused by a pathogenic germline MSH6 variant may be complicated by discordant immunohistochemistry (IHC) and/or by a microsatellite stable (MSS) phenotype. This study aimed to identify the various causes of the discordant phenotypes of colorectal cancer (CRC) and endometrial cancer (EC) in MSH6-associated LS. Data were collected from Dutch family cancer clinics. Carriers of a (likely) pathogenic MSH6 variant diagnosed with CRC or EC were categorized based on an microsatellite instability (MSI)/IHC test outcome that might fail to result in a diagnosis of LS (eg, retained staining of all 4 mismatch repair proteins, with or without an MSS phenotype, and other staining patterns). When tumor tissue was available, MSI and/or IHC were repeated. Next-generation sequencing (NGS) was performed in cases with discordant staining patterns. Data were obtained from 360 families with 1763 (obligate) carriers. MSH6 variant carriers with CRC or EC (n = 590) were included, consisting of 418 CRCs and 232 ECs. Discordant staining was reported in 77 cases (36% of MSI/IHC results). Twelve patients gave informed consent for further analysis of tumor material. Upon revision, 2 out of 3 MSI/IHC cases were found to be concordant with the MSH6 variant, and NGS showed that 4 discordant IHC results were sporadic rather than LS-associated tumors. In 1 case, somatic events explained the discordant phenotype. The use of reflex IHC mismatch repair testing, the current standard in most Western countries, may lead to the misdiagnosis of germline MSH6 variant carriers. The pathologist should point out that further diagnostics for inheritable colon cancer, including LS, should be considered in case of a strong positive family history. Germline DNA analysis of the mismatch repair genes, preferably as part of a larger gene panel, should therefore be considered in potential LS patients.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Neoplasias do Endométrio , Feminino , Humanos , Repetições de Microssatélites , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Instabilidade de Microssatélites , Neoplasias do Colo/genética , Reparo de Erro de Pareamento de DNA/genética , Neoplasias do Endométrio/genética , Proteínas de Ligação a DNA/genética , Neoplasias Colorretais/patologiaRESUMO
The DNA mismatch repair protein MutSα recognizes wrongly incorporated DNA bases and initiates their correction during DNA replication. Dysfunctions in mismatch repair lead to a predisposition to cancer. Here, we study the homozygous mutation V63E in MSH2 that was found in the germline of a patient with suspected constitutional mismatch repair deficiency syndrome who developed colorectal cancer before the age of 30. Characterization of the mutant in mouse models, as well as slippage and repair assays, shows a mildly pathogenic phenotype. Using cryogenic electron microscopy and surface plasmon resonance, we explored the mechanistic effect of this mutation on MutSα function. We discovered that V63E disrupts a previously unappreciated interface between the mismatch binding domains (MBDs) of MSH2 and MSH6 and leads to reduced DNA binding. Our research identifies this interface as a 'safety lock' that ensures high-affinity DNA binding to increase replication fidelity. Our mechanistic model explains the hypomorphic phenotype of the V63E patient mutation and other variants in the MBD interface.
Assuntos
Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteína 2 Homóloga a MutS , Animais , Camundongos , DNA/química , Mutação , Proteína 2 Homóloga a MutS/metabolismoRESUMO
The large majority of germline alterations identified in the DNA mismatch repair (MMR) gene PMS2, a low-penetrance gene for the cancer predisposition Lynch syndrome, represent variants of uncertain significance (VUS). The inability to classify most VUS interferes with personalized healthcare. The complete in vitro MMR activity (CIMRA) assay, that only requires sequence information on the VUS, provides a functional analysis-based quantitative tool to improve the classification of VUS in MMR proteins. To derive a formula that translates CIMRA assay results into the odds of pathogenicity (OddsPath) for VUS in PMS2 we used a set of clinically classified PMS2 variants supplemented by inactivating variants that were generated by an in cellulo genetic screen, as proxies for cancer-predisposing variants. Validation of this OddsPath revealed high predictive values for benign and predisposing PMS2 VUS. We conclude that the OddsPath provides an integral metric that, following the other, higher penetrance, MMR proteins MSH2, MSH6 and MLH1 can be incorporated as strong evidence type into the upcoming criteria for MMR gene VUS classification of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP).
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Endonuclease PMS2 de Reparo de Erro de Pareamento , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Testes Genéticos/métodos , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genéticaRESUMO
DNA mismatch repair (MMR) is a highly conserved pathway that corrects both base-base mispairs and insertion-deletion loops (IDLs) generated during DNA replication. Defects in MMR have been linked to carcinogenesis and drug resistance. However, the regulation of MMR is poorly understood. Interestingly, CNOT6 is one of four deadenylase subunits in the conserved CCR4-NOT complex and it targets poly(A) tails of mRNAs for degradation. CNOT6 is overexpressed in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) and androgen-independent prostate cancer cells, which suggests that an altered expression of CNOT6 may play a role in tumorigenesis. Here, we report that a depletion of CNOT6 sensitizes human U2OS cells to N-methyl-N'nitro-N-nitrosoguanidine (MNNG) and leads to enhanced apoptosis. We also demonstrate that the depletion of CNOT6 upregulates MMR and decreases the mutation frequency in MMR-proficient cells. Furthermore, the depletion of CNOT6 increases the stability of mRNA transcripts from MMR genes, leading to the increased expression of MMR proteins. Our work provides insight into a novel CNOT6-dependent mechanism for regulating MMR.
Assuntos
Reparo de Erro de Pareamento de DNA , Replicação do DNA , Apoptose/genética , Reparo de Erro de Pareamento de DNA/genética , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
The prevalent cancer predisposition Lynch syndrome (LS, OMIM #120435) is caused by an inherited heterozygous defect in any of the four core DNA mismatch repair (MMR) genes MSH2, MSH6, MLH1 or PMS2. MMR repairs errors by the replicative DNA polymerases in all proliferating tissues. Its deficiency, following somatic loss of the wild-type copy, results in a spontaneous mutator phenotype that underlies the rapid development of, predominantly, colorectal cancer (CRC) in LS. Here, we have addressed the hypothesis that aberrant responses of intestinal stem cells to diet-derived mutagens may be causally involved in the restricted cancer tropism of LS. To test this we have generated a panel of isogenic mouse embryonic stem (mES) cells with heterozygous or homozygous disruption of multiple MMR genes and investigated their responses to the common dietary mutagen and carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Our data reveal that PhIP can inactivate the wild-type allele of heterozygous mES cells via the induction of either loss of heterozygosity (LOH) or intragenic mutations. Moreover, while protective DNA damage signaling (DDS) is compromised, PhIP induces more mutations in Msh2, Mlh1, Msh6 or Pms2-deficient mES cells than in wild-type cells. Combined with their spontaneous mutator phenotypes, this results in a compound hypermutator phenotype. Together, these results indicate that dietary mutagens may promote CRC development in LS at multiple levels, providing a rationale for dietary modifications in the management of LS.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Animais , Neoplasias Encefálicas , Neoplasias Colorretais , Neoplasias Colorretais Hereditárias sem Polipose/genética , Dano ao DNA , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Dieta/efeitos adversos , Mutação em Linhagem Germinativa , Camundongos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutagênicos/toxicidade , Síndromes Neoplásicas HereditáriasRESUMO
Canonical DNA mismatch repair (MMR) excises base-base mismatches to increase the fidelity of DNA replication. Thus, loss of MMR leads to increased spontaneous mutagenesis. MMR genes also are involved in the suppression of mutagenic, and the induction of protective, responses to various types of DNA damage. In this review we describe these non-canonical roles of MMR at different lesion types. Loss of non-canonical MMR gene functions may have important ramifications for the prevention, development and treatment of colorectal cancer associated with inherited MMR gene defects in Lynch syndrome. This graphical review pays tribute to Samuel H. Wilson. Sam not only made seminal contributions to understanding base excision repair, particularly with respect to structure-function relationships in DNA polymerase ß but also, as Editor of DNA Repair, has maintained a high standard of the journal.
Assuntos
Neoplasias Colorretais/genética , Dano ao DNA , Reparo de Erro de Pareamento de DNA , Neoplasias Colorretais Hereditárias sem Polipose , DNA/metabolismo , Replicação do DNA , Humanos , MutagêneseRESUMO
Functional assays that assess mRNA splicing can be used in interpretation of the clinical significance of sequence variants, including the Lynch syndrome-associated mismatch repair (MMR) genes. The purpose of this study was to investigate the contribution of splicing assay data to the classification of MMR gene sequence variants. We assayed mRNA splicing for 24 sequence variants in MLH1, MSH2, and MSH6, including 12 missense variants that were also assessed using a cell-free in vitro MMR activity (CIMRA) assay. Multifactorial likelihood analysis was conducted for each variant, combining CIMRA outputs and clinical data where available. We collated these results with existing public data to provide a dataset of splicing assay results for a total of 671 MMR gene sequence variants (328 missense/in-frame indel), and published and unpublished repair activity measurements for 154 of these variants. There were 241 variants for which a splicing aberration was detected: 92 complete impact, 33 incomplete impact, and 116 where it was not possible to determine complete versus incomplete splicing impact. Splicing results mostly aided in the interpretation of intronic (72%) and silent (92%) variants and were the least useful for missense substitutions/in-frame indels (10%). MMR protein functional activity assays were more useful in the analysis of these exonic variants but by design they were not able to detect clinically important splicing aberrations identified by parallel mRNA assays. The development of high throughput assays that can quantitatively assess impact on mRNA transcript expression and protein function in parallel will streamline classification of MMR gene sequence variants.
RESUMO
We describe a family severely affected by colorectal cancer (CRC) where whole-exome sequencing identified the coinheritance of the germline variants encoding MSH6 p.Thr1100Met and MUTYH p.Tyr179Cys in, at least, three CRC patients diagnosed before 60 years of age. Digenic inheritance of monoallelic MSH6 variants of uncertain significance and MUTYH variants has been suggested to predispose to Lynch syndrome-associated cancers; however, cosegregation with disease in the familial setting has not yet been established. The identification of individuals carrying multiple potential cancer risk variants is expected to rise with the increased application of whole-genome sequencing and large multigene panel testing in clinical genetic counseling of familial cancer patients. Here we demonstrate the coinheritance of monoallelic variants in MSH6 and MUTYH consistent with cosegregation with CRC, further supporting a role for digenic inheritance in cancer predisposition.
RESUMO
PURPOSE: Variants in the DNA mismatch repair (MMR) gene MSH6, identified in individuals suspected of Lynch syndrome, are difficult to classify owing to the low cancer penetrance of defects in that gene. This not only obfuscates personalized health care but also the development of a rapid and reliable classification procedure that does not require clinical data. METHODS: The complete in vitro MMR activity (CIMRA) assay was calibrated against clinically classified MSH6 variants and, employing Bayes' rule, integrated with computational predictions of pathogenicity. To enable the validation of this two-component classification procedure we have employed a genetic screen to generate a large set of inactivating Msh6 variants, as proxies for pathogenic variants. RESULTS: The genetic screen-derived variants established that the two-component classification procedure displays high sensitivities and specificities. Moreover, these inactivating variants enabled the direct reclassification of human variants of uncertain significance (VUS) as (likely) pathogenic. CONCLUSION: The two-component classification procedure and the genetic screens provide complementary approaches to rapidly and cost-effectively classify the large majority of human MSH6 variants. The approach followed here provides a template for the classification of variants in other disease-predisposing genes, facilitating the translation of personalized genomics into personalized health care.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Proteínas de Ligação a DNA/genética , Teorema de Bayes , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Humanos , Proteína 2 Homóloga a MutS/genéticaRESUMO
PURPOSE: To enhance classification of variants of uncertain significance (VUS) in the DNA mismatch repair (MMR) genes in the cancer predisposition Lynch syndrome, we developed the cell-free in vitro MMR activity (CIMRA) assay. Here, we calibrate and validate the assay, enabling its integration with in silico and clinical data. METHODS: Two sets of previously classified MLH1 and MSH2 variants were selected from a curated MMR gene database, and their biochemical activity determined by the CIMRA assay. The assay was calibrated by regression analysis followed by symmetric cross-validation and Bayesian integration with in silico predictions of pathogenicity. CIMRA assay reproducibility was assessed in four laboratories. RESULTS: Concordance between the training runs met our prespecified validation criterion. The CIMRA assay alone correctly classified 65% of variants, with only 3% discordant classification. Bayesian integration with in silico predictions of pathogenicity increased the proportion of correctly classified variants to 87%, without changing the discordance rate. Interlaboratory results were highly reproducible. CONCLUSION: The CIMRA assay accurately predicts pathogenic and benign MMR gene variants. Quantitative combination of assay results with in silico analysis correctly classified the majority of variants. Using this calibration, CIMRA assay results can be integrated into the diagnostic algorithm for MMR gene variants.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Técnicas Genéticas , Células 3T3 , Animais , Teorema de Bayes , Calibragem , Simulação por Computador , Humanos , Técnicas In Vitro , Camundongos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Purpose: Pathogenic POLE proofreading domain mutations are found in many malignancies where they are associated with ultramutation and favorable prognosis. The extent to which this prognosis depends on their sensitivity to adjuvant treatment is unknown, as is the optimal therapy for advanced-staged or recurrent POLE-mutant cancers.Experimental Design: We examined the recurrence-free survival of women with POLE-mutant and POLE-wild-type endometrial cancers (EC) in the observation arm of the randomized PORTEC-1 endometrial cancer trial (N = 245 patients with stage I endometrial cancer for analysis). Sensitivity to radiotherapy and selected chemotherapeutics was compared between Pole-mutant mouse-derived embryonic stem (mES) cells, generated using CRISPR-Cas9 (Pole mutations D275A/E275A, and cancer-associated P286R, S297F, V411L) and isogenic wild-type cell lines.Results: In the observation arm of the PORTEC-1 trial (N = 245), women with POLE-mutant endometrial cancers (N = 16) had an improved recurrence-free survival (10-year recurrence-free survival 100% vs. 80.1% for POLE-wild-type; HR, 0.143; 95% confidence interval, 0.001-0.996; P = 0.049). Pole mutations did not increase sensitivity to radiotherapy nor to chemotherapeutics in mES cells. In contrast, Pole-mutant cells displayed significantly increased sensitivity to cytarabine and fludarabine (IC50Pole P286R-mutant vs. wild-type: 0.05 vs. 0.17 µmol/L for cytarabine, 4.62 vs. 11.1 µmol/L for fludarabine; P < 0.001 for both comparisons).Conclusions: The favorable prognosis of POLE-mutant cancers cannot be explained by increased sensitivity to currently used adjuvant treatments. These results support studies exploring minimization of adjuvant therapy for early-stage POLE-mutant cancers, including endometrial and colorectal cancers. Conversely, POLE mutations result in hypersensitivity to nucleoside analogues, suggesting the use of these compounds as a potentially effective targeted treatment for advanced-stage POLE-mutant cancers. Clin Cancer Res; 24(13); 3197-203. ©2018 AACR.
Assuntos
Biomarcadores Tumorais , DNA Polimerase II/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Domínios e Motivos de Interação entre Proteínas/genética , Tolerância a Radiação/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Quimioterapia Adjuvante , DNA Polimerase II/química , Feminino , Humanos , Masculino , Estadiamento de Neoplasias , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Proteínas de Ligação a Poli-ADP-Ribose/química , Prognóstico , Radioterapia Adjuvante , Resultado do TratamentoRESUMO
Nucleic acids, which constitute the genetic material of all organisms, are continuously exposed to endogenous and exogenous damaging agents, representing a significant challenge to genome stability and genome integrity over the life of a cell or organism. Unrepaired DNA lesions, such as single- and double-stranded DNA breaks (SSBs and DSBs), and single-stranded gaps can block progression of the DNA replication fork, causing replicative stress and/or cell cycle arrest. However, translesion synthesis (TLS) DNA polymerases, such as Rev1, have the ability to bypass some DNA lesions, which can circumvent the process leading to replication fork arrest and minimize replicative stress. Here, we show that Rev1-deficiency in mouse embryo fibroblasts or mouse liver tissue is associated with replicative stress and mitochondrial dysfunction. In addition, Rev1-deficiency is associated with high poly(ADP) ribose polymerase 1 (PARP1) activity, low endogenous NAD+, low expression of SIRT1 and PGC1α and low adenosine monophosphate (AMP)-activated kinase (AMPK) activity. We conclude that replication stress via Rev1-deficiency contributes to metabolic stress caused by compromized mitochondrial function via the PARP-NAD+-SIRT1-PGC1α axis.
Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias Hepáticas/genética , Nucleotidiltransferases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Poli(ADP-Ribose) Polimerases/genética , Sirtuína 1/genética , Animais , DNA Polimerase Dirigida por DNA , Embrião de Mamíferos , Feminino , Fibroblastos/citologia , Fibroblastos/enzimologia , Regulação da Expressão Gênica , Fígado/enzimologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , NAD/metabolismo , Nucleotidiltransferases/deficiência , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Cultura Primária de Células , Transdução de Sinais , Sirtuína 1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismoRESUMO
Endogenous DNA damage is causally associated with the functional decline and transformation of stem cells that characterize aging. DNA lesions that have escaped DNA repair can induce replication stress and genomic breaks that induce senescence and apoptosis. It is not clear how stem and proliferating cells cope with accumulating endogenous DNA lesions and how these ultimately affect the physiology of cells and tissues. Here we have addressed these questions by investigating the hematopoietic system of mice deficient for Rev1, a core factor in DNA translesion synthesis (TLS), the postreplicative bypass of damaged nucleotides. Rev1 hematopoietic stem and progenitor cells displayed compromised proliferation, and replication stress that could be rescued with an antioxidant. The additional disruption of Xpc, essential for global-genome nucleotide excision repair (ggNER) of helix-distorting nucleotide lesions, resulted in the perinatal loss of hematopoietic stem cells, progressive loss of bone marrow, and fatal aplastic anemia between 3 and 4 months of age. This was associated with replication stress, genomic breaks, DNA damage signaling, senescence, and apoptosis in bone marrow. Surprisingly, the collapse of the Rev1Xpc bone marrow was associated with progressive mitochondrial dysfunction and consequent exacerbation of oxidative stress. These data reveal that, to protect its genomic and functional integrity, the hematopoietic system critically depends on the combined activities of repair and replication of helix-distorting oxidative nucleotide lesions by ggNER and Rev1-dependent TLS, respectively. The error-prone nature of TLS may provide mechanistic understanding of the accumulation of mutations in the hematopoietic system upon aging.
Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Sistema Hematopoético/fisiologia , Estresse Oxidativo , Animais , Apoptose , Medula Óssea/patologia , Proliferação de Células , Senescência Celular/genética , DNA Polimerase Dirigida por DNA , Genoma , Células-Tronco Hematopoéticas/patologia , Camundongos , NucleotidiltransferasesRESUMO
Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Análise Mutacional de DNA/métodos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Encefálicas/metabolismo , Estudos de Coortes , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Predisposição Genética para Doença , Variação Genética , Mutação em Linhagem Germinativa , Humanos , Instabilidade de Microssatélites , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Síndromes Neoplásicas Hereditárias/metabolismo , Países BaixosRESUMO
REV1 is a eukaryotic member of the Y-family of DNA polymerases involved in translesion DNA synthesis and genome mutagenesis. Recently, REV1 is also found to function in homologous recombination. However, it remains unclear how REV1 is recruited to the sites where homologous recombination is processed. Here, we report that loss of mammalian REV1 results in a specific defect in replication-associated gene conversion. We found that REV1 is targeted to laser-induced DNA damage stripes in a manner dependent on its ubiquitin-binding motifs, on RAD18, and on monoubiquitinated FANCD2 (FANCD2-mUb) that associates with REV1. Expression of a FANCD2-Ub chimeric protein in RAD18-depleted cells enhances REV1 assembly at laser-damaged sites, suggesting that FANCD2-mUb functions downstream of RAD18 to recruit REV1 to DNA breaks. Consistent with this suggestion we found that REV1 and FANCD2 are epistatic with respect to sensitivity to the double-strand break-inducer camptothecin. REV1 enrichment at DNA damage stripes also partially depends on BRCA1 and BRCA2, components of the FANCD2/BRCA supercomplex. Intriguingly, analogous to FANCD2-mUb and BRCA1/BRCA2, REV1 plays an unexpected role in protecting nascent replication tracts from degradation by stabilizing RAD51 filaments. Collectively these data suggest that REV1 plays multiple roles at stalled replication forks in response to replication stress.
Assuntos
Dano ao DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Proteínas Nucleares/fisiologia , Nucleotidiltransferases/fisiologia , Camptotecina/toxicidade , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Conversão Gênica , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estresse Fisiológico/genética , Inibidores da Topoisomerase I/toxicidade , Ubiquitina-Proteína LigasesRESUMO
In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa-Atr-Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects.