Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Mar Drugs ; 21(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37623724

RESUMO

Antimicrobial resistance can be considered a hidden global pandemic and research must be reinforced for the discovery of new antibiotics. The spirotetronate class of polyketides, with more than 100 bioactive compounds described to date, has recently grown with the discovery of phocoenamicins, compounds displaying different antibiotic activities. Three marine Micromonospora strains (CA-214671, CA-214658 and CA-218877), identified as phocoenamicins producers, were chosen to scale up their production and LC/HRMS analyses proved that EtOAc extracts from their culture broths produce several structurally related compounds not disclosed before. Herein, we report the production, isolation and structural elucidation of two new phocoenamicins, phocoenamicins D and E (1-2), along with the known phocoenamicin, phocoenamicins B and C (3-5), as well as maklamicin (7) and maklamicin B (6), the latter being reported for the first time as a natural product. All the isolated compounds were tested against various human pathogens and revealed diverse strong to negligible activity against methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis H37Ra, Enterococcus faecium and Enterococcus faecalis. Their cell viability was also evaluated against the human liver adenocarcinoma cell line (Hep G2), demonstrating weak or no cytotoxicity. Lastly, the safety of the major compounds obtained, phocoenamicin (3), phocoenamicin B (4) and maklamicin (7), was tested against zebrafish eleuthero embryos and all of them displayed no toxicity up to a concentration of 25 µM.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Micromonospora , Humanos , Animais , Peixe-Zebra , Macrolídeos/farmacologia , Antibacterianos/farmacologia
2.
Front Cell Dev Biol ; 10: 952832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238691

RESUMO

Tuberous sclerosis complex (TSC) is a multisystem genetic disorder caused by pathogenic variants in TSC1 and TSC2 genes. TSC patients present with seizures and brain abnormalities such as tubers and subependymal giant cells astrocytoma (SEGA). Despite common molecular and clinical features, the severity of the disease varies greatly, even intrafamilially. The second hit hypothesis suggests that an additional, inactivating mutation in the remaining functional allele causes a more severe phenotype and therefore explains the phenotypic variability. Recently, second hit mutations have been detected frequently in mTORopathies. To investigate the pathophysiological effects of second hit mutations, several mouse models have been developed. Here, we opted for a double mutant zebrafish model that carries a LOF mutation both in the tsc2 and the depdc5 gene. To the best of our knowledge, this is the first time a second-hit model has been studied in zebrafish. Significantly, the DEP domain-containing protein 5 (DEPDC5) gene has an important role in the regulation of mTORC1, and the combination of a germline TSC2 and somatic DEPDC5 mutation has been described in a TSC patient with intractable epilepsy. Our depdc5 -/- x tsc2 -/- double mutant zebrafish line displayed greatly increased levels of mammalian target of rapamycin (mTORC1) activity, augmented seizure susceptibility, and early lethality which could be rescued by rapamycin. Histological analysis of the brain revealed ventricular dilatation in the tsc2 and double homozygotes. RNA-sequencing showed a linear relation between the number of differentially expressed genes (DEGs) and the degree of mTORC1 hyperactivity. Enrichment analysis of their transcriptomes revealed that many genes associated with neurological developmental processes were downregulated and mitochondrial genes were upregulated. In particular, the transcriptome of human SEGA lesions overlapped strongly with the double homozygous zebrafish larvae. The data highlight the clinical relevance of the depdc5 -/- x tsc2 -/- double mutant zebrafish larvae that showed a more severe phenotype compared to the single mutants. Finally, analysis of gene-drug interactions identified interesting pharmacological targets for SEGA, underscoring the value of our small zebrafish vertebrate model for future drug discovery efforts.

3.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215359

RESUMO

PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer. Both halimide and plinabulin were found to have antiseizure activity in the larval zebrafish pentylenetetrazole (PTZ) seizure model via automated locomotor analysis and non-invasive local field potential recordings. The efficacy of plinabulin was further characterized in animal models of drug-resistant seizures, i.e., the larval zebrafish ethyl ketopentenoate (EKP) seizure model and the mouse 6 Hz psychomotor seizure model. Plinabulin was observed to be highly effective against EKP-induced seizures, on the behavioral and electrophysiological level, and showed activity in the mouse model. These data suggest that plinabulin could be of interest for the treatment of drug-resistant seizures. Finally, the investigation of two functional analogues, colchicine and indibulin, which were observed to be inactive against EKP-induced seizures, suggests that microtubule depolymerization does not underpin plinabulin's antiseizure action.

4.
Cell Death Differ ; 29(1): 230-245, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453119

RESUMO

Mounting evidence indicates that immunogenic therapies engaging the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress favor proficient cancer cell-immune interactions, by stimulating the release of immunomodulatory/proinflammatory factors by stressed or dying cancer cells. UPR-driven transcription of proinflammatory cytokines/chemokines exert beneficial or detrimental effects on tumor growth and antitumor immunity, but the cell-autonomous machinery governing the cancer cell inflammatory output in response to immunogenic therapies remains poorly defined. Here, we profiled the transcriptome of cancer cells responding to immunogenic or weakly immunogenic treatments. Bioinformatics-driven pathway analysis indicated that immunogenic treatments instigated a NF-κB/AP-1-inflammatory stress response, which dissociated from both cell death and UPR. This stress-induced inflammation was specifically abolished by the IRE1α-kinase inhibitor KIRA6. Supernatants from immunogenic chemotherapy and KIRA6 co-treated cancer cells were deprived of proinflammatory/chemoattractant factors and failed to mobilize neutrophils and induce dendritic cell maturation. Furthermore, KIRA6 significantly reduced the in vivo vaccination potential of dying cancer cells responding to immunogenic chemotherapy. Mechanistically, we found that the anti-inflammatory effect of KIRA6 was still effective in IRE1α-deficient cells, indicating a hitherto unknown off-target effector of this IRE1α-kinase inhibitor. Generation of a KIRA6-clickable photoaffinity probe, mass spectrometry, and co-immunoprecipitation analysis identified cytosolic HSP60 as a KIRA6 off-target in the IKK-driven NF-κB pathway. In sum, our study unravels that HSP60 is a KIRA6-inhibitable upstream regulator of the NF-κB/AP-1-inflammatory stress responses evoked by immunogenic treatments. It also urges caution when interpreting the anti-inflammatory action of IRE1α chemical inhibitors.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Humanos , Imidazóis , Morte Celular Imunogênica , Inflamação/metabolismo , Naftalenos , Pirazinas
5.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502306

RESUMO

Cystinosis is a rare, incurable, autosomal recessive disease caused by mutations in the CTNS gene. This gene encodes the lysosomal cystine transporter cystinosin, leading to lysosomal cystine accumulation in all cells of the body, with kidneys being the first affected organs. The current treatment with cysteamine decreases cystine accumulation, but does not reverse the proximal tubular dysfunction, glomerular injury or loss of renal function. In our previous study, we have developed a zebrafish model of cystinosis through a nonsense mutation in the CTNS gene and have shown that zebrafish larvae recapitulate the kidney phenotype described in humans. In the current study, we characterized the adult cystinosis zebrafish model and evaluated the long-term effects of the disease on kidney and extra renal organs through biochemical, histological, fertility and locomotor activity studies. We found that the adult cystinosis zebrafish presents cystine accumulation in various organs, altered kidney morphology, impaired skin pigmentation, decreased fertility, altered locomotor activity and ocular anomalies. Overall, our data indicate that the adult cystinosis zebrafish model reproduces several human phenotypes of cystinosis and may be useful for studying pathophysiology and long-term effects of novel therapies.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistina/metabolismo , Cistinose/patologia , Modelos Animais de Doenças , Rim/patologia , Mutação , Proteínas de Peixe-Zebra/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Cistinose/etiologia , Humanos , Rim/metabolismo , Fenótipo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Anal Biochem ; 629: 114311, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34302800

RESUMO

The choriogenin H - EGFP transgenic medaka (Oryzias melastigma) has been used to test estrogenic substances and quantify estrogenic activity into 17ß-estradiol (E2) equivalency (EEQ). The method uses 8 eleutheroembryos in 2 ml solution per well and 3 wells per treatment in 24-well plates at 26 ± 1 °C for 24 ± 2 h, with subsequent measurements of induced GFP signal intensity. EEQ measurements are calculated using a E2 probit regression model with a coefficient of determination (R2) > 0.90. The selectivity was confirmed evaluating 27 known estrogenic and 5 known non-estrogenic compounds. Limit of quantitation (LOQ), recovery rate and bias were calculated to be 1 ng/ml EEQ, 104% and 4% respectively. Robustness analysis revealed exposure temperature is a sensitive parameter that should be kept at 26 ± 1 °C. The repeatability of intra- and inter-laboratories achieved CV < 30% for most tested food and cosmetics samples. The lot-lot stability was confirmed by the stable EEQ qualitative control (QC, 1 ng/mL E2) and calibration curve results. The stability of standard reagents, samples and sample extracts was also investigated. These data demonstrated this method to be an accurate indicator of estrogenic activity for both chemicals and extracts.


Assuntos
Animais Geneticamente Modificados/metabolismo , Proteínas do Ovo/análise , Estradiol/química , Oryzias/metabolismo , Precursores de Proteínas/análise , Animais , Animais Geneticamente Modificados/embriologia , Técnicas Biossensoriais , Extratos Celulares/química , Estradiol/metabolismo , Limite de Detecção , Oryzias/embriologia , Análise de Regressão
7.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497611

RESUMO

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/química , Evolução Molecular , Feminino , Humanos , Insulina/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo
8.
PLoS Pathog ; 15(9): e1008009, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31536612

RESUMO

Human noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days. The virus (HuNoV GII.4) could be passaged from larva to larva two consecutive times. HuNoV is detected in cells of the hematopoietic lineage and the intestine, supporting the notion of a dual tropism. Antiviral treatment reduces HuNoV replication by >2 log10, showing that this model is suited for antiviral studies. Zebrafish larvae constitute a simple and robust replication model that will largely facilitate studies of HuNoV biology and the development of antiviral strategies.


Assuntos
Norovirus/fisiologia , Norovirus/patogenicidade , Replicação Viral/fisiologia , Peixe-Zebra/virologia , Animais , Antivirais/administração & dosagem , Infecções por Caliciviridae/virologia , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Larva/virologia , Metagenômica , Modelos Animais , Norovirus/genética , Cultura de Vírus/métodos , Replicação Viral/efeitos dos fármacos
9.
Behav Brain Res ; 363: 135-144, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30684511

RESUMO

Tuberous sclerosis complex (TSC) is a rare disease caused by mutations in the TSC1 or TSC2 genes and is characterized by widespread tumour growth, intractable epilepsy, cognitive deficits and autistic behaviour. CBD has been reported to decrease seizures and inhibit tumour cell progression, therefore we sought to determine the influence of CBD on TSC pathology in zebrafish carrying a nonsense mutation in the tsc2 gene. CBD treatment from 6 to 7 days post-fertilization (dpf) induced significant anxiolytic actions without causing sedation. Furthermore, CBD treatment from 3 dpf had no impact on tsc2-/- larvae motility nor their survival. CBD treatment did, however, reduce the number of phosphorylated rpS6 positive cells, and their cross-sectional cell size. This suggests a CBD mediated suppression of mechanistic target of rapamycin (mTOR) activity in the tsc2-/- larval brain. Taken together, these data suggest that CBD selectively modulates levels of phosphorylated rpS6 in the brain and additionally provides an anxiolytic effect. This is pertinent given the alterations in mTOR signalling in experimental models of TSC. Additional work is necessary to identify upstream signal modulation and to further justify the use of CBD as a possible therapeutic strategy to manage TSC.


Assuntos
Canabidiol/farmacologia , Proteína S6 Ribossômica/efeitos dos fármacos , Esclerose Tuberosa/tratamento farmacológico , Animais , Encéfalo/metabolismo , Canabidiol/metabolismo , Canabinoides/metabolismo , Canabinoides/farmacologia , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Locomoção/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Convulsões/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Esclerose Tuberosa/fisiopatologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Curr Top Med Chem ; 17(30): 3236-3248, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29357800

RESUMO

After the identification of the anti-inflammatory properties of VA5-13l (2-benzyl-1- methyl-5-nitroindazolinone) in previous investigations, some of its analogous compounds were designed, synthesized and evaluated in two anti-inflammatory methods: LPS-enhanced leukocyte migration assay in zebrafish; and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema. The products evaluated (3, 6, 8, 9 and 10) showed the lower values of relative leukocyte migration at 30 µM (0.14, 0.07, 0.10, 0.13 and 0.07, respectively), while in ear edema and myeloperoxidase activity methods, all the compounds reduced inflammation, only 4 and 16 yielded unsatisfactory results. The relationship linking structure and activity (SAR analysis) was determinate by using SARANEA software. The importance of the 5-Nitro group of the indazole ring for the activity was evident, and showed modest reduction when benzyl (Bn) is changed by alkyl group. A substituted Bn moiety at N2 (R) is the best substituent (5-10); nevertheless, if methylene group of Bn is deleted, the activity is affected. Also, introduction of halogen atoms mainly at positions 3 or 4 of the benzyl moiety (6 and 10) leads in general to strong activities. In fact, compounds 7 and 8 (R = 4-FBn or 4-ClBn, respectively) exhibit satisfactory results in in vivo tests and appear promising. The production of IL-6 at all doses assayed was significantly reduced, except with 16. Nonetheless, the production of TNF-α was significantly inhibited only by this chemical (16) at concentration of 50 µM. On the other hand, compound 2 was the one that mostly inhibited the expression of COX-2 and iNOS. From these results, it can be concluded that the inhibition in the release of cytokines can be one of the mechanisms of action responsible for the anti-inflammatory effect for 2-benzyl derivates while other 2-alkyl derivatives can inhibit production of NO. Therefore, nitroindazolinone chemical prototype could be an interesting structural group with anti-inflammatory purposes in the therapeutic.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Indazóis/farmacologia , Informática , Nitrocompostos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Humanos , Indazóis/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrocompostos/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Peixe-Zebra
12.
Neurochem Int ; 112: 124-133, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174382

RESUMO

Epilepsy is a neurological disease that affects more than 70 million people worldwide and is characterized by the presence of spontaneous unprovoked recurrent seizures. Existing anti-seizure drugs (ASDs) have side effects and fail to control seizures in 30% of patients due to drug resistance. Hence, safer and more efficacious drugs are sorely needed. Flavonoids are polyphenolic structures naturally present in most plants and consumed daily with no adverse effects reported. These structures have shown activity in several seizure and epilepsy animal models through allosteric modulation of GABAA receptors, but also via potent anti-inflammatory action in the brain. As such, dietary flavonoids offer an interesting source for ASD and anti-epileptogenic drug (AED) discovery, but their pharmaceutical potential is often hampered by metabolic instability and low oral bioavailability. It has been argued that their drug-likeness can be improved via methylation of the free hydroxyl groups, thereby dramatically enhancing metabolic stability and membrane transport, facilitating absorption and highly increasing bioavailability. Since no scientific data is available regarding the use of methylated flavonoids in the fight against epilepsy, we studied naringenin (NRG), kaempferol (KFL), and three methylated derivatives, i.e., naringenin 7-O-methyl ether (NRG-M), naringenin 4',7-dimethyl ether (NRG-DM), and kaempferide (4'-O-methyl kaempferol) (KFD) in the zebrafish pentylenetetrazole (PTZ) seizure model. We demonstrate that the methylated flavanones NRG-DM and NRG-M are highly effective against PTZ-induced seizures in larval zebrafish, whereas NRG and the flavonols KFL and KFD possess only a limited activity. Moreover, we show that NRG-DM is active in two standard acute mouse seizure models, i.e., the timed i.v. PTZ seizure model and the 6-Hz psychomotor seizure model. Based on these results, NRG-DM is proposed as a lead compound that is worth further investigation for the treatment of generalized seizures and drug-resistant focal seizures. Our data therefore highlights the potential of methylated flavonoids in the search for new and improved ASDs.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/prevenção & controle , Flavanonas/uso terapêutico , Flavonoides/uso terapêutico , Éteres Metílicos/uso terapêutico , Convulsões/prevenção & controle , Animais , Anticonvulsivantes/metabolismo , Relação Dose-Resposta a Droga , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Flavanonas/metabolismo , Flavonoides/metabolismo , Masculino , Éteres Metílicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Convulsões/metabolismo , Peixe-Zebra
13.
Neurobiol Dis ; 108: 225-237, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28888969

RESUMO

Tuberous sclerosis complex (TSC) is a rare, genetic disease caused by loss-of-function mutations in either TSC1 or TSC2. Patients with TSC are neurologically characterized by the presence of abnormal brain structure, intractable epilepsy and TSC-associated neuropsychiatric disorders. Given the lack of effective long-term treatments for TSC, there is a need to gain greater insight into TSC-related pathophysiology and to identify and develop new treatments. In this work we show that homozygous tsc2-/- mutant zebrafish larvae, but not tsc2+/- and WT larvae, display enlarged brains, reduced locomotor behavior and epileptiform discharges at 7dpf. In addition, we pharmacologically validated the TSC model by demonstrating the dramatic rescue effect of pericardially injected rapamycin, a well-known mTOR inhibitor, on selected behavioral read-outs and at the molecular level. By means of trancriptome profiling we also acquired more insight into the neuropathology of TSC, and as a result were able to highlight possible new treatment targets. The gene expression profiles of WT and tsc2+/- larvae revealed 117 differentially expressed genes (DEGs), while between WT and tsc2-/- larvae and tsc2+/- and tsc2-/- larvae there were 1414 and 1079 DEGs, respectively. Pathway enrichment analysis from the WT and tsc2-/- DEGs, identified 14 enriched pathways from the up-regulated genes and 6 enriched pathways from the down-regulated genes. Moreover, genes related to inflammation and immune response were up-regulated in the heads of tsc2-/- larvae, in line with the findings in human brain tissue where inflammatory and immune responses appear to be major hallmarks of TSC. Taken together, our phenotypic, transcriptomic and pharmacological analysis identified the tsc2-/- zebrafish as a preclinical model that mirrors well aspects of the human condition and delineated relevant TSC-related biological pathways. The model may be of value for future TSC-related drug discovery and development programs.


Assuntos
Encéfalo/anormalidades , Peptídeos e Proteínas de Sinalização Intracelular/genética , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Esclerose Tuberosa/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patologia , Expressão Gênica , Inflamação/metabolismo , Inflamação/patologia , Larva , Atividade Motora/fisiologia , Tamanho do Órgão , Fenótipo , Análise de Sobrevida , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteínas de Peixe-Zebra/metabolismo
14.
Cell Death Differ ; 24(5): 832-843, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28234357

RESUMO

Innate immune sensing of dying cells is modulated by several signals. Inflammatory chemokines-guided early recruitment, and pathogen-associated molecular patterns-triggered activation, of major anti-pathogenic innate immune cells like neutrophils distinguishes pathogen-infected stressed/dying cells from sterile dying cells. However, whether certain sterile dying cells stimulate innate immunity by partially mimicking pathogen response-like recruitment/activation of neutrophils remains poorly understood. We reveal that sterile immunogenic dying cancer cells trigger (a cell autonomous) pathogen response-like chemokine (PARC) signature, hallmarked by co-release of CXCL1, CCL2 and CXCL10 (similar to cells infected with bacteria or viruses). This PARC signature recruits preferentially neutrophils as first innate immune responders in vivo (in a cross-species, evolutionarily conserved manner; in mice and zebrafish). Furthermore, key danger signals emanating from these dying cells, that is, surface calreticulin, ATP and nucleic acids stimulate phagocytosis, purinergic receptors and toll-like receptors (TLR) i.e. TLR7/8/9-MyD88 signaling on neutrophil level, respectively. Engagement of purinergic receptors and TLR7/8/9-MyD88 signaling evokes neutrophil activation, which culminates into H2O2 and NO-driven respiratory burst-mediated killing of viable residual cancer cells. Thus sterile immunogenic dying cells perform 'altered-self mimicry' in certain contexts to exploit neutrophils for phagocytic targeting of dead/dying cancer cells and cytotoxic targeting of residual cancer cells.


Assuntos
Quimiocina CCL2/genética , Quimiocina CXCL10/genética , Quimiocina CXCL1/genética , Quimiocinas CC/genética , Neutrófilos/imunologia , Animais , Animais Geneticamente Modificados , Apoptose , Linhagem Celular Tumoral , Quimiocina CCL2/imunologia , Quimiocina CXCL1/imunologia , Quimiocina CXCL10/imunologia , Quimiocinas CC/imunologia , Técnicas de Cocultura , Citotoxicidade Imunológica , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Masculino , Melanócitos/imunologia , Melanócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Neuroglia/imunologia , Neuroglia/patologia , Neutrófilos/citologia , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Peixe-Zebra
15.
Int J Mol Sci ; 18(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208716

RESUMO

Drug-induced liver injury (DILI) is the most common reason for failures during the drug development process and for safety-related withdrawal of drugs from the pharmaceutical market. Therefore, having tools and techniques that can detect hepatotoxic properties in drug candidates at an early discovery stage is highly desirable. In this study, cell imaging counting was used to measure in a fast, straightforward, and unbiased way the effect of paracetamol and tetracycline, (compounds known to cause hepatotoxicity in humans) on the amount of DsRed-labeled hepatocytes recovered by protease digestion from Tg(fabp10a:DsRed) transgenic zebrafish. The outcome was in general comparable with the results obtained using two reference methods, i.e., visual analysis of liver morphology by fluorescence microscopy and size analysis of fluorescent 2D liver images. In addition, our study shows that administering compounds into the yolk is relevant in the framework of hepatotoxicity testing. Taken together, cell imaging counting provides a novel and rapid tool for screening hepatotoxicants in early stages of drug development. This method is also suitable for testing of other organ-related toxicities subject to the organs and tissues expressing fluorescent proteins in transgenic zebrafish lines.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Larva , Imagem Molecular , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Biópsia , Contagem de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Expressão Gênica , Genes Reporter , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos
16.
Sci Rep ; 7: 42583, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198397

RESUMO

The human ubiquitous protein cystinosin is responsible for transporting the disulphide amino acid cystine from the lysosomal compartment into the cytosol. In humans, Pathogenic mutations of CTNS lead to defective cystinosin function, intralysosomal cystine accumulation and the development of cystinosis. Kidneys are initially affected with generalized proximal tubular dysfunction (renal Fanconi syndrome), then the disease rapidly affects glomeruli and progresses towards end stage renal failure and multiple organ dysfunction. Animal models of cystinosis are limited, with only a Ctns knockout mouse reported, showing cystine accumulation and late signs of tubular dysfunction but lacking the glomerular phenotype. We established and characterized a mutant zebrafish model with a homozygous nonsense mutation (c.706 C > T; p.Q236X) in exon 8 of ctns. Cystinotic mutant larvae showed cystine accumulation, delayed development, and signs of pronephric glomerular and tubular dysfunction mimicking the early phenotype of human cystinotic patients. Furthermore, cystinotic larvae showed a significantly increased rate of apoptosis that could be ameliorated with cysteamine, the human cystine depleting therapy. Our data demonstrate that, ctns gene is essential for zebrafish pronephric podocyte and proximal tubular function and that the ctns-mutant can be used for studying the disease pathogenic mechanisms and for testing novel therapies for cystinosis.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinose/genética , Cistinose/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Apoptose/genética , Cistina/metabolismo , Cistinose/mortalidade , Cistinose/patologia , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Taxa de Filtração Glomerular , Humanos , Glomérulos Renais/patologia , Glomérulos Renais/ultraestrutura , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/ultraestrutura , Locomoção , Lisossomos/metabolismo , Fenótipo , Podócitos/metabolismo , Podócitos/patologia , Podócitos/ultraestrutura , Peixe-Zebra
17.
Neurology ; 86(23): 2162-70, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27164707

RESUMO

OBJECTIVE: Voltage-gated sodium channel (Nav)-encoding genes are among early-onset epileptic encephalopathies (EOEE) targets, suggesting that other genes encoding Nav-binding proteins, such as fibroblast growth factor homologous factors (FHFs), may also play roles in these disorders. METHODS: To identify additional genes for EOEE, we performed whole-exome sequencing in a family quintet with 2 siblings with a lethal disease characterized by EOEE and cerebellar atrophy. The pathogenic nature and functional consequences of the identified sequence alteration were determined by electrophysiologic studies in vitro and in vivo. RESULTS: A de novo heterozygous missense mutation was identified in the FHF1 gene (FHF1AR114H, FHF1BR52H) in the 2 affected siblings. The mutant FHF1 proteins had a strong gain-of-function phenotype in transfected Neuro2A cells, enhancing the depolarizing shifts in Nav1.6 voltage-dependent fast inactivation, predicting increased neuronal excitability. Surprisingly, the gain-of-function effect is predicted to result from weaker interaction of mutant FHF1 with the Nav cytoplasmic tail. Transgenic overexpression of mutant FHF1B in zebrafish larvae enhanced epileptiform discharges, demonstrating the epileptic potential of this FHF1 mutation in the affected children. CONCLUSIONS: Our data demonstrate that gain-of-function FHF mutations can cause neurologic disorder, and expand the repertoire of genetic causes (FHF1) and mechanisms (altered Nav gating) underlying EOEE and cerebellar atrophy.


Assuntos
Doenças Cerebelares/genética , Epilepsia/genética , Epilepsia/fisiopatologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mutação , Idade de Início , Animais , Animais Geneticamente Modificados , Atrofia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Linhagem Celular Tumoral , Doenças Cerebelares/diagnóstico por imagem , Criança , Pré-Escolar , Epilepsia/diagnóstico por imagem , Evolução Fatal , Feminino , Humanos , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Irmãos , Peixe-Zebra
18.
Mol Clin Oncol ; 5(6): 678-688, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28101348

RESUMO

Photodynamic diagnosis (PDD) improves the detection of non-muscle-invasive bladder cancer (NMIBC). However, white-light (WL) cystoscopy remains the technique routinely used in urological clinics. A more cost-effective but equally performant alternative to PDD may encompass the use of an intense tumoritropic dye in combination with WL cystoscopy. Using a preclinical setting, we investigated the practical aspects of the use of Evans blue (EB) dye for the possible future detection of NMIBC using WL cystoscopy. A solution of 1 and 5 mM EB was instilled into healthy and AY-27 tumor-bearing rat bladders. The bladders were then rapidly dissected and the inner walls were inspected for EB using WL stereomicroscopy. EB present in the bladders and the plasma was also quantified using high performance liquid chromatography. To assess the effects of repeated instillations on normal rat bladders, EB was instilled for 7 consecutive days, after which time the bladder wall was investigated histologically. To gain insight into the mechanisms underlying the selective accumulation of EB in malignant urothelium, RNA sequencing of urothelial tissue and subsequent comparative analysis were performed, with a specific focus on cell adhesion. The concentrations of EB were substantially higher in malignant bladders compared with those in healthy bladders, matching the blue staining of the inner bladder wall observed by stereomicroscopy. EB was equally present in the plasma of healthy and tumor-bearing subjects, although at low concentrations. Importantly, EB did not cause any abnormalities in the urothelium after 7 days of repeated instillation in normal rats. RNA sequencing of the urothelium indicated an abnormal expression of several genes related to cell adhesion in malignant urothelium compared with the normal urothelium. Our findings may be important for future clinical developments in the field of diagnostics for bladder cancer. Implementing the more cost-effective protocol of EB instillations in combination with WL cystoscopy may offer a benefit to patients as well as the healthcare system.

19.
Front Immunol ; 6: 588, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635802

RESUMO

The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.

20.
Oncotarget ; 6(29): 26841-60, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26314964

RESUMO

Immunogenic cell death (ICD) is a well-established instigator of 'anti-cancer vaccination-effect (AVE)'. ICD has shown considerable preclinical promise, yet there remain subset of cancer patients that fail to respond to clinically-applied ICD inducers. Non-responsiveness to ICD inducers could be explained by the existence of cancer cell-autonomous, anti-AVE resistance mechanisms. However such resistance mechanisms remain poorly investigated. In this study, we have characterized for the first time, a naturally-occurring preclinical cancer model (AY27) that exhibits intrinsic anti-AVE resistance despite treatment with ICD inducers like mitoxantrone or hypericin-photodynamic therapy. Further mechanistic analysis revealed that this anti-AVE resistance was associated with a defect in exposing the important 'eat me' danger signal, surface-calreticulin (ecto-CRT/CALR). In an ICD setting, this defective ecto-CRT further correlated with severely reduced phagocytic clearance of AY27 cells as well as the failure of these cells to activate AVE. Defective ecto-CRT in response to ICD induction was a result of low endogenous CRT protein levels (i.e. CRTlow-phenotype) in AY27 cells. Exogenous reconstitution of ecto-rCRT (recombinant-CRT) improved the phagocytic removal of ICD inducer-treated AY27 cells, and importantly, significantly increased their AVE-activating ability. Moreover, we found that a subset of cancer patients of various cancer-types indeed possessed CALRlow or CRTlow-tumours. Remarkably, we found that tumoural CALRhigh-phenotype was predictive of positive clinical responses to therapy with ICD inducers (radiotherapy and paclitaxel) in lung and ovarian cancer patients, respectively. Furthermore, only in the ICD clinical setting, tumoural CALR levels positively correlated with the levels of various phagocytosis-associated genes relevant for phagosome maturation or processing. Thus, we reveal the existence of a cancer cell-autonomous, anti-AVE or anti-ICD resistance mechanism that has profound clinical implications for anticancer immunotherapy and cancer predictive biomarker analysis.


Assuntos
Vacinas Anticâncer/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias/metabolismo , Fagócitos/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antracenos , Antineoplásicos/uso terapêutico , Apoptose , Biomarcadores Tumorais , Calreticulina/química , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Mitoxantrona/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/terapia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Perileno/análogos & derivados , Perileno/uso terapêutico , Fagocitose , Fenótipo , Fotoquimioterapia/métodos , Prognóstico , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA