Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 453: 139686, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788650

RESUMO

Chlorella vulgaris and Tetraselmis chuii are two microalgae species already marketed because of their richness in high-value and health-beneficial compounds. Previous studies have demonstrated the biological properties of compounds isolated from both microalgae, although data are not yet available on the impact that pre-treatment and gastrointestinal digestion could exert on these properties. The aim of the present study was to analyze the impact of the biomass pre-treatment (freeze/thaw cycles plus ultrasounds) and simulated gastrointestinal digestion in the bioaccessibility and in vitro antioxidant activity (ABTS, ORAC, Q-FRAP, Q-DPPH) of the released digests. The cell wall from microalgae were susceptible to the pre-treatment and the action of saliva and gastric enzymes, releasing bioactive peptides and phenolic compounds that contributed to the potent antioxidant activity of digests through their radical scavenging and iron reduction capacities. Our findings suggest the potential of these microalgae against oxidative stress-associated diseases at both, intestinal and systemic level.


Assuntos
Antioxidantes , Chlorella vulgaris , Digestão , Trato Gastrointestinal , Microalgas , Modelos Biológicos , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Chlorella vulgaris/química , Chlorella vulgaris/metabolismo , Microalgas/química , Microalgas/metabolismo , Humanos , Trato Gastrointestinal/metabolismo , Biomassa , Clorófitas/química , Clorófitas/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769211

RESUMO

Colorectal cancer (CRC) is a global public health problem as it is the third most prevalent and the second most lethal cancer worldwide. Major efforts are underway to understand its molecular pathways as well as to define the tumour-associated antigens (TAAs) and tumour-specific antigens (TSAs) or neoantigens, in order to develop an effective treatment. Cell therapies are currently gaining importance, and more specifically chimeric antigen receptor (CAR)-T cell therapy, in which genetically modified T cells are redirected against the tumour antigen of interest. This immunotherapy has emerged as one of the most promising advances in cancer treatment, having successfully demonstrated its efficacy in haematological malignancies. However, in solid tumours, such as colon cancer, it is proving difficult to achieve the same results due to the shortage of TSAs, on-target off-tumour effects, low CAR-T cell infiltration and the immunosuppressive microenvironment. To address these challenges in CRC, new approaches are proposed, including combined therapies, the regional administration of CAR-T cells and more complex CAR structures, among others. This review comprehensively summarises the current landscape of CAR-T cell therapy in CRC from the potential tumour targets to the preclinical studies and clinical trials, as well as the limitations and future perspectives of this novel antitumour strategy.


Assuntos
Neoplasias Colorretais/terapia , Imunoterapia Adotiva , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Ensaios Clínicos como Assunto , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/uso terapêutico
3.
J Immunol ; 201(10): 2977-2985, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30322967

RESUMO

Phagocytosis is a pivotal process by which innate immune cells eliminate bacteria. In this study, we explore novel regulatory mechanisms of phagocytosis driven by the mitochondria. Fas-activated serine/threonine kinase (FASTK) is an RNA-binding protein with two isoforms, one localized to the mitochondria (mitoFASTK) and the other isoform to cytosol and nucleus. The mitoFASTK isoform has been reported to be necessary for the biogenesis of the mitochondrial ND6 mRNA, which encodes an essential subunit of mitochondrial respiratory complex I (CI, NADH:ubiquinone oxidoreductase). This study investigates the role and the mechanisms of action of FASTK in phagocytosis. Macrophages from FASTK─/─ mice exhibited a marked increase in nonopsonic phagocytosis of bacteria. As expected, CI activity was specifically reduced by almost 50% in those cells. To explore if decreased CI activity could underlie the phagocytic phenotype, we tested the effect of CI inhibition on phagocytosis. Indeed, treatment with CI inhibitor rotenone or short hairpin RNAs against two CI subunits (NDUFS3 and NDUFS4) resulted in a marked increase in nonopsonic phagocytosis of bacteria. Importantly, re-expression of mitoFASTK in FASTK-depleted macrophages was sufficient to rescue the phagocytic phenotype. In addition, we also report that the decrease in CI activity in FASTK─/─ macrophages is associated with an increase in phosphorylation of the energy sensor AMP-activated protein kinase (AMPK) and that its inhibition using Compound C reverted the phagocytosis phenotype. Taken together, our results clearly demonstrate for the first time, to our knowledge, that mitoFASTK plays a negative regulatory role on nonopsonic phagocytosis of bacteria in macrophages through its action on CI activity.


Assuntos
Complexo I de Transporte de Elétrons/biossíntese , Regulação da Expressão Gênica/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Animais , Bactérias/imunologia , Complexo I de Transporte de Elétrons/imunologia , Isoenzimas , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
4.
PLoS One ; 13(7): e0200210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979748

RESUMO

Hearing loss is the most common sensorineural disorder, affecting over 5% of the population worldwide. Its most frequent cause is the loss of hair cells (HCs), the mechanosensory receptors of the cochlea. HCs transduce incoming sounds into electrical signals that activate auditory neurons, which in turn send this information to the brain. Although some spontaneous HC regeneration has been observed in neonatal mammals, the very small pool of putative progenitor cells that have been identified in the adult mammalian cochlea is not able to replace the damaged HCs, making any hearing impairment permanent. To date, guided differentiation of human cells to HC-like cells has only been achieved using either embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). However, use of such cell types suffers from a number of important disadvantages, such as the risk of tumourigenicity if transplanted into the host´s tissue. We have obtained cells expressing hair cell markers from cultures of human fibroblasts by overexpression of GFI1, Pou4f3 and ATOH1 (GPA), three genes that are known to play a critical role in the development of HCs. Immunocytochemical, qPCR and RNAseq analyses demonstrate the expression of genes typically expressed by HCs in the transdifferentiated cells. Our protocol represents a much faster approach than the methods applied to ESCs and iPSCs and validates the combination of GPA as a set of genes whose activation leads to the direct conversion of human somatic cells towards the hair cell lineage. Our observations are expected to contribute to the development of future therapies aimed at the regeneration of the auditory organ and the restoration of hearing.


Assuntos
Transdiferenciação Celular/fisiologia , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Miosina VIIa , Miosinas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo , Fatores de Transcrição/genética , Tretinoína/farmacologia
5.
J Sci Food Agric ; 98(14): 5269-5277, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29652436

RESUMO

BACKGROUND: Lipid supplementation of ruminant diet is an excellent tool to improve the nutritional quality of dairy fat. The purpose of this research was to monitor in detail the goat milk fatty acid (FA) profile during the first 24 h after linseed oil (LO) supplementation or suppression in the diet. Particular emphasis was placed in the changes of FA with bioactive properties. Milk fat was analysed by gas chromatography from milkings at 0, 1, 3, 6, 12 and 24 h after diet shift. RESULTS: The α-linolenic acid levels increased 12 h after LO incorporation in the diet and decreased 3 h after oil suppression. Most of the milk 10:0 to 16:0 saturated FA decreased 24 h after LO supplementation, whereas oil suppression raised their levels after 6 h. Similarly, raising of mono- and polyunsaturated trans-FA after LO inclusion was delayed in comparison with their decrease after oil suppression. CONCLUSION: This study supports that ruminal bacteria and mammary glands would exhibit a fast responsiveness after the inclusion or suppression of LO in ruminant rations. Milk with an improved FA profile could be collected between 12 h after LO supplementation and the last milking before LO suppression in the diet. © 2018 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Ácidos Graxos/química , Óleo de Semente do Linho/metabolismo , Leite/química , Animais , Suplementos Nutricionais/análise , Ácidos Graxos/metabolismo , Cabras/metabolismo , Leite/metabolismo
6.
FEBS J ; 281(17): 3844-54, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25040622

RESUMO

Proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1) is an adaptor protein associated with the cytoskeleton that is mainly expressed in hematopoietic cells. Mutations in PSTPIP1 cause the rare autoinflammatory disease called pyogenic arthritis, pyoderma gangrenosum, and acne. We carried out this study to further our knowledge on PSTPIP1 function in T cells, particularly in relation to the phosphatase lymphoid phosphatase (LYP), which is involved in several autoimmune diseases. LYP-PSTPIP1 binding occurs through the C-terminal homology domain of LYP and the F-BAR domain of PSTPIP1. PSTPIP1 inhibits T-cell activation upon T-cell receptor (TCR) and CD28 engagement, regardless of CD2 costimulation. This function of PSTPIP1 depends on the presence of an intact SH3 domain rather than on the F-BAR domain, indicating that ligands of the F-BAR domain, such as the PEST phosphatases LYP and PTP-PEST, are not critical for its negative regulatory role in TCR signaling. Additionally, PSTPIP1 mutations that cause the pyogenic arthritis, pyoderma gangrenosum and acne syndrome do not affect PSTPIP1 function in T-cell activation through the TCR.


Assuntos
Acne Vulgar/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Artrite Infecciosa/genética , Proteínas do Citoesqueleto/fisiologia , Pioderma Gangrenoso/genética , Receptores de Antígenos de Linfócitos T/fisiologia , Domínios de Homologia de src/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Antígenos CD28/fisiologia , Complexo CD3/fisiologia , Proteínas do Citoesqueleto/genética , Células HEK293 , Humanos , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 22/fisiologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/fisiologia
7.
J Dairy Res ; 75(4): 399-405, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18701002

RESUMO

The aim of this research was to enhance the nutritional quality of ewe milk fat by increasing potentially healthy fatty acids (FA) through diet supplementation with unprotected oil rich in linoleic acid, and without detrimental effects on animal performance. Twenty-four ewes were assigned to two high concentrate diets, control or supplemented with 6% sunflower oil (SO), for 4 weeks. No differences between treatments were found in milk production and dry matter intake. Although the SO diet increased milk fat percentage and tended to reduce milk protein concentration, it did not affect milk fat, protein or total solid yield. Most of the modifications in milk FA composition were addressed toward a potentially healthier profile: a decrease in C12:0 to C16:0 and a remarkable increase in the contents of cis-9 trans-11 C18:2 (from 0.94 to 3.60 g/100 g total FA) and trans-11 C18:1 (from 2.23 to 8.61 g/100 g total FA). Furthermore, the levels reached were maintained throughout the period monitored. However, the SO diet increased other trans C18:1 isomer percentages, too. The lack of differences between treatments in the in vitro ruminal fermentation parameters, studied with batch cultures of rumen microorganisms, would indicate no negative effects on ruminal fermentation.


Assuntos
Ração Animal , Suplementos Nutricionais , Ácidos Graxos/análise , Lactação/fisiologia , Leite/fisiologia , Óleos de Plantas/administração & dosagem , Animais , Fibras na Dieta , Proteínas Alimentares , Feminino , Fermentação , Lactação/efeitos dos fármacos , Leite/química , Leite/efeitos dos fármacos , Proteínas do Leite/análise , Óleos de Plantas/farmacologia , Ovinos , Óleo de Girassol
8.
J Chromatogr A ; 1204(1): 110-3, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18692191

RESUMO

This study used GC and silver-ion HPLC to examine the effects of temperature and time on methylation of individual and mixtures of conjugated linoleic acid (CLA) isomers in free fatty acid form using sulphuric acid as catalyst. In the conditions tested (temperatures between 20 and 50 degrees C and times between 10 and 60 min) methylation was complete while avoiding isomerization of conjugated dienes and the formation of artefacts that could interfere with chromatographic determinations. An analytical method using solvent extraction of the lipids followed by selective elution of the free fatty acids from aminopropyl bonded phase columns and methylation with H(2)SO(4) in mild conditions was then applied to determine the CLA isomers in free fatty acid form in rumen fluid, and the results were evaluated.


Assuntos
Cromatografia Gasosa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos não Esterificados/química , Ácido Linoleico/química , Metanol/química , Ácidos Sulfúricos/química , Catálise , Isomerismo , Metilação
9.
J Immunol ; 174(11): 7033-42, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15905546

RESUMO

CD229 is a member of the CD150 family of the Ig superfamily expressed on T and B cells. Receptors of this family regulate cytokine production and cytotoxicity of lymphocytes and NK cells. The cytoplasmic tail of CD229 binds to SAP, a protein that is defective in X-linked lymphoproliferative syndrome. To identify the CD229 ligand, we generated a soluble Ig fusion protein containing the two N-terminal extracellular domains of human CD229 (CD229-Ig). CD229-Ig bound to CD229-transfected cells, whereas no binding was detected on cells expressing other CD150 family receptors, showing that CD229 binds homophilically. Both human and mouse CD229 interacted with itself. Domain deletion mutants showed that the N-terminal Ig-domain mediates homophilic adhesion. CD229-CD229 binding was severely compromised when the charged amino acids E27 and E29 on the predicted B-C loop and R89 on the F-G loop of the N-terminal domain were mutated to alanine. In contrast, one mutation, R44A, enhanced the homophilic interaction. Confocal microscopy image analysis revealed relocalization of CD229 to the contact area of T and B cells during Ag-dependent immune synapse formation. Thus, CD229 is its own ligand and participates in the immunological synapse.


Assuntos
Antígenos CD/metabolismo , Comunicação Celular/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células COS , Comunicação Celular/genética , Linhagem Celular Tumoral , Humanos , Células Jurkat , Ativação Linfocitária/genética , Camundongos , Mutagênese Sítio-Dirigida , Mapeamento de Peptídeos , Ligação Proteica/genética , Ligação Proteica/imunologia , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/genética , Família de Moléculas de Sinalização da Ativação Linfocitária , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA