Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(8): 1475-1495.e18, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521065

RESUMO

Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.


Assuntos
Cromatina , Neoplasias , Animais , Humanos , Camundongos , Cromatina/genética , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
2.
Nucleic Acids Res ; 52(3): 1173-1187, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38084915

RESUMO

Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.


Assuntos
Rad51 Recombinase , Transativadores , DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Fosfoproteínas Fosfatases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Tirosina/genética , Humanos , Transativadores/metabolismo
3.
Mol Cancer ; 22(1): 158, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777742

RESUMO

The Eyes Absent (EYA) family of proteins is an atypical group of four dual-functioning protein phosphatases (PP), which have been linked to many vital cellular processes and organogenesis pathways. The four family members of this PP family possess transcriptional activation and phosphatase functions, with serine/threonine and tyrosine phosphatase domains. EYA4 has been associated with several human cancers, with tumor-suppressing and tumor-promoting roles. However, EYA4 is the least well-characterized member of this unique family of PP, with its biological functions and molecular mechanisms in cancer progression, particularly in breast cancer, still largely unknown. In the present study, we found that the over-expression of EYA4 in breast tissue leads to an aggressive and invasive breast cancer phenotype, while the inhibition of EYA4 reduced tumorigenic properties of breast cancer cells in vitro and in vivo. Cellular changes downstream of EYA4, including cell proliferation and migration, may explain the increased metastatic power of breast cancer cells over-expressing EYA4. Mechanistically, EYA4 prevents genome instability by inhibiting the accumulation of replication-associated DNA damage. Its depletion results in polyploidy as a consequence of endoreplication, a phenomenon that can occur in response to stress. The absence of EYA4 leads to spontaneous replication stress characterized by the activation of the ATR pathway, sensitivity to hydroxyurea, and accumulation of endogenous DNA damage as indicated by increased γH2AX levels. In addition, we show that EYA4, specifically its serine/threonine phosphatase domain, plays an important and so far, unexpected role in replication fork progression. This phosphatase activity is essential for breast cancer progression and metastasis. Taken together, our data indicate that EYA4 is a novel potential breast cancer oncogene that supports primary tumor growth and metastasis. Developing therapeutics aimed at the serine/threonine phosphatase activity of EYA4 represents a robust strategy for killing breast cancer cells, to limit metastasis and overcome chemotherapy resistance caused by endoreplication and genomic rearrangements.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Transativadores/genética , Transativadores/metabolismo , Linhagem Celular Tumoral , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Serina
4.
Res Sq ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292941

RESUMO

The Eyes Absent (EYA) family of proteins is an atypical group of four dual-functioning protein phosphatases, which have been linked to many vital cellular processes and organogenesis pathways. Like the other isoforms, EYA4 possesses transcriptional activation and phosphatase functions, with serine/threonine and tyrosine phosphatase domains. EYA4 has been associated with several human cancers, with tumor-suppressing and tumor-promoting roles. However, EYA4 is the least well-characterized member of this unique family of phosphatases, with its biological functions and molecular mechanisms in cancer progression, particularly in breast cancer, still largely unknown. In the present study, we found that the over-expression of EYA4 in breast tissue leads to an aggressive and invasive breast cancer phenotype, while the inhibition of EYA4 reduced tumorigenic properties of breast cancer cells in vitro and in vivo . Cellular changes downstream of EYA4, including cell proliferation and migration, may explain the increased metastatic power of breast cancer cells over-expressing EYA4. Mechanistically, EYA4 prevents genome instability by inhibiting the accumulation of replication-associated DNA damage. Its depletion results in polyploidy as a consequence of endoreplication, a phenomenon that can occur in response to stress. The absence of EYA4 leads to spontaneous replication stress characterized by the activation of the ATR pathway, sensitivity to hydroxyurea, and accumulation of endogenous DNA damage as indicated by increased γH2AX levels. In addition, we show that EYA4, specifically its serine/threonine phosphatase domain, plays an important and so far, unexpected role in replication fork progression. This phosphatase activity is essential for breast cancer progression and metastasis. Taken together, our data indicate that EYA4 is a novel breast cancer oncogene that supports primary tumor growth and metastasis. Developing therapeutics aimed at the serine/threonine phosphatase activity of EYA4 represents a robust strategy for killing breast cancer cells, to limit metastasis and overcome chemotherapy resistance caused by endoreplication and genomic rearrangements.

5.
bioRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36891287

RESUMO

Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human disease remains unexplored. Here, we investigated the impact of non-synonymous mutations in SF3B1 and U2AF1, two commonly mutated splicing factors in cancer, on transcription. We find that the mutations impair RNA Polymerase II (RNAPII) transcription elongation along gene bodies leading to transcription-replication conflicts, replication stress and altered chromatin organization. This elongation defect is linked to disrupted pre-spliceosome assembly due to impaired association of HTATSF1 with mutant SF3B1. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC complex, which, when modulated, normalize transcription defects and their downstream effects. Our findings shed light on the mechanisms by which oncogenic mutant spliceosomes impact chromatin organization through their effects on RNAPII transcription elongation and present a rationale for targeting the Sin3/HDAC complex as a potential therapeutic strategy. HIGHLIGHTS: Oncogenic mutations of SF3B1 and U2AF1 cause a gene-body RNAPII elongation defectRNAPII transcription elongation defect leads to transcription replication conflicts, DNA damage response, and changes to chromatin organization and H3K4me3 marksThe transcription elongation defect is linked to disruption of the early spliceosome formation through impaired interaction of HTATSF1 with mutant SF3B1.Changes to chromatin organization reveal potential therapeutic strategies by targeting the Sin3/HDAC pathway.

6.
Sci Rep ; 12(1): 6169, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418189

RESUMO

Uterine fibroid (UF) driver mutations in Mediator complex subunit 12 (MED12) trigger genomic instability and tumor development through unknown mechanisms. Herein, we show that MED12 mutations trigger aberrant R-loop-induced replication stress, suggesting a possible route to genomic instability and a novel therapeutic vulnerability in this dominant UF subclass. Immunohistochemical analyses of patient-matched tissue samples revealed that MED12 mutation-positive UFs, compared to MED12 mutation-negative UFs and myometrium, exhibited significantly higher levels of R-loops and activated markers of Ataxia Telangiectasia and Rad3-related (ATR) kinase-dependent replication stress signaling in situ. Single molecule DNA fiber analysis revealed that primary cells from MED12 mutation-positive UFs, compared to those from patient-matched MED12 mutation-negative UFs and myometrium, exhibited defects in replication fork dynamics, including reduced fork speeds, increased and decreased numbers of stalled and restarted forks, respectively, and increased asymmetrical bidirectional forks. Notably, these phenotypes were recapitulated and functionally linked in cultured uterine smooth muscle cells following chemical inhibition of Mediator-associated CDK8/19 kinase activity that is known to be disrupted by UF driver mutations in MED12. Thus, Mediator kinase inhibition triggered enhanced R-loop formation and replication stress leading to an S-phase cell cycle delay, phenotypes that were rescued by overexpression of the R-loop resolving enzyme RNaseH. Altogether, these findings reveal MED12-mutant UFs to be uniquely characterized by aberrant R-loop induced replication stress, suggesting a possible basis for genomic instability and new avenues for therapeutic intervention that involve the replication stress phenotype in this dominant UF subtype.


Assuntos
Leiomioma , Complexo Mediador , Neoplasias Uterinas , Feminino , Instabilidade Genômica , Humanos , Leiomioma/patologia , Complexo Mediador/genética , Complexo Mediador/metabolismo , Estruturas R-Loop , Fatores de Transcrição/metabolismo , Neoplasias Uterinas/patologia
7.
Cancer Res ; 82(11): 2156-2170, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35247877

RESUMO

BRCA1-mediated homologous recombination is an important DNA repair mechanism that is the target of FDA-approved PARP inhibitors, yet details of BRCA1-mediated functions remain to be fully elucidated. Similarly, immune checkpoint molecules are targets of FDA-approved cancer immunotherapies, but the biological and mechanistic consequences of their application are incompletely understood. We show here that the immune checkpoint molecule PD-L1 regulates homologous recombination in cancer cells by promoting BRCA1 nuclear foci formation and DNA end resection. Genetic depletion of tumor PD-L1 reduced homologous recombination, increased nonhomologous end joining, and elicited synthetic lethality to PARP inhibitors olaparib and talazoparib in vitro in some, but not all, BRCA1 wild-type tumor cells. In vivo, genetic depletion of tumor PD-L1 rendered olaparib-resistant tumors sensitive to olaparib. In contrast, anti-PD-L1 immune checkpoint blockade neither enhanced olaparib synthetic lethality nor improved its efficacy in vitro or in wild-type mice. Tumor PD-L1 did not alter expression of BRCA1 or its cofactor BARD1 but instead coimmunoprecipitated with BARD1 and increased BRCA1 nuclear accumulation. Tumor PD-L1 depletion enhanced tumor CCL5 expression and TANK-binding kinase 1 activation in vitro, similar to known immune-potentiating effects of PARP inhibitors. Collectively, these data define immune-dependent and immune-independent effects of PARP inhibitor treatment and genetic tumor PD-L1 depletion. Moreover, they implicate a tumor cell-intrinsic, immune checkpoint-independent function of PD-L1 in cancer cell BRCA1-mediated DNA damage repair with translational potential, including as a treatment response biomarker. SIGNIFICANCE: PD-L1 upregulates BRCA1-mediated homologous recombination, and PD-L1-deficient tumors exhibit BRCAness by manifesting synthetic lethality in response to PARP inhibitors, revealing an exploitable therapeutic vulnerability and a candidate treatment response biomarker. See related commentary by Hanks, p. 2069.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/uso terapêutico , Antígeno B7-H1/genética , Proteína BRCA1/genética , Linhagem Celular Tumoral , Reparo do DNA , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutações Sintéticas Letais
8.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35031563

RESUMO

Drugs that block the activity of the methyltransferase EZH2 are in clinical development for the treatment of non-Hodgkin lymphomas harboring EZH2 gain-of-function mutations that enhance its polycomb repressive function. We have previously reported that EZH2 can act as a transcriptional activator in castration-resistant prostate cancer (CRPC). Now we show that EZH2 inhibitors can also block the transactivation activity of EZH2 and inhibit the growth of CRPC cells. Gene expression and epigenomics profiling of cells treated with EZH2 inhibitors demonstrated that in addition to derepressing gene expression, these compounds also robustly down-regulate a set of DNA damage repair (DDR) genes, especially those involved in the base excision repair (BER) pathway. Methylation of the pioneer factor FOXA1 by EZH2 contributes to the activation of these genes, and interaction with the transcriptional coactivator P300 via the transactivation domain on EZH2 directly turns on the transcription. In addition, CRISPR-Cas9-mediated knockout screens in the presence of EZH2 inhibitors identified these BER genes as the determinants that underlie the growth-inhibitory effect of EZH2 inhibitors. Interrogation of public data from diverse types of solid tumors expressing wild-type EZH2 demonstrated that expression of DDR genes is significantly correlated with EZH2 dependency and cellular sensitivity to EZH2 inhibitors. Consistent with these findings, treatment of CRPC cells with EZH2 inhibitors dramatically enhances their sensitivity to genotoxic stress. These studies reveal a previously unappreciated mechanism of action of EZH2 inhibitors and provide a mechanistic basis for potential combination cancer therapies.


Assuntos
Dano ao DNA/genética , Dano ao DNA/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ativação Transcricional , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Reparo do DNA/genética , Reparo do DNA/fisiologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo
9.
Sci Adv ; 7(31)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34321211

RESUMO

The role of RNA methylation on N 6-adenosine (m6A) in cancer has been acknowledged, but the underlying mechanisms remain obscure. Here, we identified homeobox containing 1 (HMBOX1) as an authentic target mRNA of m6A machinery, which is highly methylated in malignant cells compared to the normal counterparts and subject to expedited degradation upon the modification. m6A-mediated down-regulation of HMBOX1 causes telomere dysfunction and inactivation of p53 signaling, which leads to chromosome abnormalities and aggressive phenotypes. CRISPR-based, m6A-editing tools further prove that the methyl groups on HMBOX1 per se contribute to the generation of altered cancer genome. In multiple types of human cancers, expression of the RNA methyltransferase METTL3 is negatively correlated with the telomere length but favorably with fractions of altered cancer genome, whereas HMBOX1 mRNA levels show the opposite patterns. Our work suggests that the cancer-driving genomic alterations may potentially be fixed by rectifying particular epitranscriptomic program.

10.
Breast Cancer Res Treat ; 185(3): 601-614, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33180234

RESUMO

PURPOSE: Chromatin remodeling plays an essential role in regulating transcriptional networks and timing of gene expression. Chromatin remodelers such as SWItch/Sucrose Non-Fermentable (SWI/SNF) harbor many protein components, with the catalytic subunit providing ATPase activity to displace histones along or from the DNA molecules, and associated subunits ensuring tissue specificity and transcriptional or co-transcriptional activities. Mutations in several of the SWI/SNF subunits have been linked to cancer. Here, we investigate between SMARCD3/Baf60c expression and hormone-positive (ER+) breast cancer. METHODS:  The level of SMARCD3 was detected by immunohistochemistry in breast cancer patient samples, and expression levels of SMARCD1, SMARCD2, and SMARCD3 were investigated using publicly available datasets from large cohorts of breast cancer patients. Using molecular biology and microscopy, we interrogated the cellular consequences of lower SMARCD3 expression. RESULTS:  Lower proliferation rates were observed in SMARCD3-depleted cells, which reflects a failure of the cell cycle progression and an increase in endoreplication. In the absence of SMARCD3, p21 accumulates in cells, but does not halt the cell cycle, and DNA damage accumulates and remains unrepaired. CONCLUSION:  Taken together, our data begin to explain why ER+ breast cancer patients with low-SMARCD3 expressing tumors exhibit reduced survival rates compared to patients expressing normal or higher levels of SMARCD3. SMARCD3 might act as a tumor suppressor through regulation of cell cycle checkpoints and could be a reliable and specific breast cancer prognostic biomarker.


Assuntos
Neoplasias da Mama , Fatores de Transcrição , Neoplasias da Mama/genética , Ciclo Celular/genética , Dano ao DNA , Feminino , Humanos , Sacarose , Fatores de Transcrição/genética
11.
J Vis Exp ; (160)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32658192

RESUMO

Mammalian cells are constantly exposed to chemicals, radiations, and naturally occurring metabolic by-products, which create specific types of DNA insults. Genotoxic agents can damage the DNA backbone, break it, or modify the chemical nature of individual bases. Following DNA insult, DNA damage response (DDR) pathways are activated and proteins involved in the repair are recruited. A plethora of factors are involved in sensing the type of damage and activating the appropriate repair response. Failure to correctly activate and recruit DDR factors can lead to genomic instability, which underlies many human pathologies including cancer. Studies of DDR proteins can provide insights into genotoxic drug response and cellular mechanisms of drug resistance. There are two major ways of visualizing proteins in vivo: direct observation, by tagging the protein of interest with a fluorescent protein and following it by live imaging, or indirect immunofluorescence on fixed samples. While visualization of fluorescently tagged proteins allows precise monitoring over time, direct tagging in N- or C-terminus can interfere with the protein localization or function. Observation of proteins in their unmodified, endogenous version is preferred. When DNA repair proteins are recruited to the DNA insult, their concentration increases locally and they form groups, or "foci", that can be visualized by indirect immunofluorescence using specific antibodies. Although detection of protein foci does not provide a definitive proof of direct interaction, co-localization of proteins in cells indicates that they regroup to the site of damage and can inform of the sequence of events required for complex formation. Careful analysis of foci spatial overlap in cells expressing wild type or mutant versions of a protein can provide precious clues on functional domains important for DNA repair function. Last, co-localization of proteins indicates possible direct interactions that can be verified by co-immunoprecipitation in cells, or direct pulldown using purified proteins.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Imunofluorescência/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA