Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Med Genet A ; 188(9): 2819-2824, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779070

RESUMO

EVEN-PLUS syndrome is a rare autosomal recessive disorder caused by biallelic pathogenic variants in the mitochondrial chaperone called mortalin, encoded by HSPA9. This genetic disorder, presenting with several overlapping features with CODAS syndrome, is characterized by the involvement of the Epiphyses, Vertebrae, Ears, and Nose (EVEN), PLUS associated findings. Only five individuals presenting with the EVEN-PLUS phenotype and biallelic variants in HSPA9 have been published. Here, we expand the phenotypic and molecular spectrum associated with this disorder, reporting two sibs with a milder phenotype and compound heterozygous pathogenic variants (a recurrent variant and a novel one). Also, we confirm a homozygous pathogenic variant in the family originally reported as EVE dysplasia.


Assuntos
Anormalidades Craniofaciais , Osteocondrodisplasias , Anormalidades Dentárias , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Proteínas de Choque Térmico HSP70/genética , Homozigoto , Humanos , Proteínas Mitocondriais/genética , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenótipo
2.
Eur J Med Genet ; 64(11): 104338, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500087

RESUMO

Mosaic Variegated Aneuploidy Syndrome 2 (MVA2; MIM 614114) is a rare autosomal recessive disorder, characterized by mosaic aneuploidies involving multiple chromosomes and tissues, caused by biallelic pathogenic variants in the CEP57 gene. Only 10 patients have been reported to date. We report two additional non related cases born to Moroccan consanguineous parents, carrying the previously described c.915_925dup11 CEP57 homozygous variant. Common features of these 12 cases include growth retardation, typically of prenatal onset, distinctive facial features, endocrine, cardiovascular and skeletal, abnormalities while malignancies have not been reported. This report describes the phenotypical spectrum of MVA2.


Assuntos
Transtornos Cromossômicos/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Fenótipo , Criança , Transtornos Cromossômicos/patologia , Humanos , Masculino , Mosaicismo , Mutação
3.
Eur J Endocrinol ; 185(5): 691-705, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34516402

RESUMO

OBJECTIVE: Next generation sequencing (NGS) has expanded the diagnostic paradigm turning the focus to the growth plate. The aim of the study was to determine the prevalence of variants in genes implicated in skeletal dysplasias in probands with short stature and mild skeletal anomalies. DESIGN: Clinical and radiological data were collected from 108 probands with short stature and mild skeletal anomalies. METHODS: A customized skeletal dysplasia NGS panel was performed. Variants were classified using ACMG recommendations and Sherloc. Anthropometric measurements and skeletal anomalies were subsequently compared in those with or without an identified genetic defect. RESULTS: Heterozygous variants were identified in 21/108 probands (19.4%). Variants were most frequently identified in ACAN (n = 10) and IHH (n = 7) whilst one variant was detected in COL2A1, CREBBP, EXT1, and PTPN11. Statistically significant differences (P < 0.05) were observed for sitting height/height (SH/H) ratio, SH/H ratio standard deviation score (SDS), and the SH/H ratio SDS >1 in those with an identified variant compared to those without. CONCLUSIONS: A molecular defect was elucidated in a fifth of patients. Thus, the prevalence of mild forms of skeletal dysplasias is relatively high in individuals with short stature and mild skeletal anomalies, with variants in ACAN and IHH accounting for 81% of the cases. An elevated SH/H ratio appears to be associated with a greater probability in detecting a variant, but no other clinical or radiological feature has been found determinant to finding a genetic cause. Currently, we cannot perform extensive molecular studies in all short stature individuals so detailed clinical and radiological phenotyping may orientate which are the candidate patients to obtain worthwhile results. In addition, detailed phenotyping of probands and family members will often aid variant classification.


Assuntos
Estatura/genética , Osso e Ossos/anormalidades , Nanismo/genética , Osteocondrodisplasias/genética , Adolescente , Antropometria , Criança , Pré-Escolar , Feminino , Variação Genética , Lâmina de Crescimento/anormalidades , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Linhagem , Prevalência
4.
Genome Biol ; 22(1): 111, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863366

RESUMO

BACKGROUND: Oncopanel genomic testing, which identifies important somatic variants, is increasingly common in medical practice and especially in clinical trials. Currently, there is a paucity of reliable genomic reference samples having a suitably large number of pre-identified variants for properly assessing oncopanel assay analytical quality and performance. The FDA-led Sequencing and Quality Control Phase 2 (SEQC2) consortium analyze ten diverse cancer cell lines individually and their pool, termed Sample A, to develop a reference sample with suitably large numbers of coding positions with known (variant) positives and negatives for properly evaluating oncopanel analytical performance. RESULTS: In reference Sample A, we identify more than 40,000 variants down to 1% allele frequency with more than 25,000 variants having less than 20% allele frequency with 1653 variants in COSMIC-related genes. This is 5-100× more than existing commercially available samples. We also identify an unprecedented number of negative positions in coding regions, allowing statistical rigor in assessing limit-of-detection, sensitivity, and precision. Over 300 loci are randomly selected and independently verified via droplet digital PCR with 100% concordance. Agilent normal reference Sample B can be admixed with Sample A to create new samples with a similar number of known variants at much lower allele frequency than what exists in Sample A natively, including known variants having allele frequency of 0.02%, a range suitable for assessing liquid biopsy panels. CONCLUSION: These new reference samples and their admixtures provide superior capability for performing oncopanel quality control, analytical accuracy, and validation for small to large oncopanels and liquid biopsy assays.


Assuntos
Alelos , Biomarcadores Tumorais , Frequência do Gene , Testes Genéticos/métodos , Variação Genética , Genômica/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Heterogeneidade Genética , Testes Genéticos/normas , Genômica/normas , Humanos , Neoplasias/diagnóstico , Fluxo de Trabalho
5.
Am J Med Genet A ; 185(3): 856-865, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33305909

RESUMO

Stuve-Wiedemann syndrome (SWS; MIM 601559) is a rare autosomal recessive disease caused by mutations in the leukemia inhibitor factor receptor gene (LIFR). Common clinical and radiological findings are often observed, and high neonatal mortality occurs due to respiratory distress and hyperthermic episodes. Despite initially considered as a lethal disorder during the newborn period, in recent years, several SWS childhood survivors have been reported. We report a detailed clinical and radiological characterization of four unrelated childhood SWS molecularly confirmed patients and review 22 previously reported childhood surviving cases. We contribute to the definition of the childhood survival phenotype of SWS, emphasizing the evolving phenotype, characterized by skeletal abnormalities with typical radiological findings, distinctive dysmorphic features, and dysautonomia. Based on the typical features and clinical course, early diagnosis is possible and crucial to plan appropriate management and prevent potential complications. Genetic confirmation is advisable in order to improve genetic counseling to the patients and their families.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Exostose Múltipla Hereditária/diagnóstico por imagem , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Osteocondrodisplasias/diagnóstico por imagem , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Doenças Ósseas Metabólicas/genética , Pré-Escolar , Consanguinidade , Deficiências do Desenvolvimento/genética , Disautonomia Familiar/genética , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/patologia , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/deficiência , Masculino , Hipotonia Muscular/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Fenótipo , Roma (Grupo Étnico)/genética , Sobreviventes
6.
Am J Med Genet A ; 179(8): 1591-1597, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31120642

RESUMO

Despite BMP4 signaling being critical to Rathke's pouch induction and maintenance during early stages of pituitary development, its implication in the etiology of combined pituitary hormone deficiency (CPHD) and other clinical presentations of congenital hypopituitarism has not yet been definitely demonstrated. We report here the first CPHD patient with a de novo pathogenic loss-of-function variant in BMP4. A 6-year-old boy, with macrocephaly, myopia/astigmatism, mild psychomotor retardation, anterior pituitary hypoplasia and ectopic posterior pituitary, clinically diagnosed with growth hormone deficiency, and central hypothyroidism, was referred for genetic analysis of CPHD. Targeted NGS analysis with a custom panel (n = 310 genes) identified a novel heterozygous de novo nonsense variant, NM_001202.5:c.794G > A, p.(Trp265*) in BMP4, which introduces a premature stop codon in the BMP4 pro-domain, impairing the transcription of the TGF-ß mature peptide domain. Additional relevant variants in other genes implicated in pituitary development signaling pathways such as SMAD4 and E2F4 (BMP/TGF-pathway), ALMS1 (NOTCH-pathway), and TSHZ1 (Prokineticin-pathway), were also identified. Our results support the implication of the BMP/TGF-ß signaling pathway in the etiology of CPHD and suggest that oligogenic contribution of additional inherited variants may modify the phenotypic expressivity of BMP4 pathogenic variants.


Assuntos
Proteína Morfogenética Óssea 4/genética , Hipopituitarismo/genética , Hipopituitarismo/metabolismo , Mutação com Perda de Função , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Biomarcadores , Proteína Morfogenética Óssea 4/metabolismo , Criança , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Gráficos de Crescimento , Heterozigoto , Humanos , Hipopituitarismo/diagnóstico , Masculino , Fenótipo
7.
J Clin Oncol ; 37(6): 490-503, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30625039

RESUMO

PURPOSE: Germline mutations in DNA damage repair (DDR) genes are identified in a significant proportion of patients with metastatic prostate cancer, but the clinical implications of these genes remain unclear. This prospective multicenter cohort study evaluated the prevalence and effect of germline DDR (gDDR) mutations on metastatic castration-resistance prostate cancer (mCRPC) outcomes. PATIENTS AND METHODS: Unselected patients were enrolled at diagnosis of mCRPC and were screened for gDDR mutations in 107 genes. The primary aim was to assess the impact of ATM/BRCA1/BRCA2/ PALB2 germline mutations on cause-specific survival (CSS) from diagnosis of mCRPC. Secondary aims included the association of gDDR subgroups with response outcomes for mCRPC treatments. Combined progression-free survival from the first systemic therapy (PFS) until progression on the second systemic therapy (PFS2) was also explored. RESULTS: We identified 68 carriers (16.2%) of 419 eligible patients, including 14 with BRCA2, eight with ATM, four with BRCA1, and none with PALB2 mutations. The study did not reach its primary end point, because the difference in CSS between ATM/BRCA1/BRCA2/PALB2 carriers and noncarriers was not statistically significant (23.3 v 33.2 months; P = .264). CSS was halved in germline BRCA2 (g BRCA2) carriers (17.4 v 33.2 months; P = .027), and g BRCA2 mutations were identified as an independent prognostic factor for CCS (hazard ratio [HR], 2.11; P = .033). Significant interactions between g BRCA2 status and treatment type (androgen signaling inhibitor v taxane therapy) were observed (CSS adjusted P = .014; PFS2 adjusted P = .005). CSS (24.0 v 17.0 months) and PFS2 (18.9 v 8.6 months) were greater in g BRCA2 carriers treated in first line with abiraterone or enzalutamide compared with taxanes. Clinical outcomes did not differ by treatment type in noncarriers. CONCLUSION: g BRCA2 mutations have a deleterious impact on mCRPC outcomes that may be affected by the first line of treatment used. Determination of g BRCA2 status may be of assistance for the selection of the initial treatment in mCRPC. Nonetheless, confirmatory studies are required before these results can support a change in clinical practice.


Assuntos
Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Reparo do DNA , Mutação em Linhagem Germinativa , Neoplasias de Próstata Resistentes à Castração/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína BRCA1/genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Intervalo Livre de Progressão , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , Espanha , Fatores de Tempo
8.
J Exp Med ; 216(2): 407-418, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30591517

RESUMO

Generalized lymphatic anomaly (GLA) is a vascular disorder characterized by diffuse or multifocal lymphatic malformations (LMs). The etiology of GLA is poorly understood. We identified four distinct somatic PIK3CA variants (Glu542Lys, Gln546Lys, His1047Arg, and His1047Leu) in tissue samples from five out of nine patients with GLA. These same PIK3CA variants occur in PIK3CA-related overgrowth spectrum and cause hyperactivation of the PI3K-AKT-mTOR pathway. We found that the mTOR inhibitor, rapamycin, prevented lymphatic hyperplasia and dysfunction in mice that expressed an active form of PIK3CA (His1047Arg) in their lymphatics. We also found that rapamycin reduced pain in patients with GLA. In conclusion, we report that somatic activating PIK3CA mutations can cause GLA, and we provide preclinical and clinical evidence to support the use of rapamycin for the treatment of this disabling and deadly disease.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Linfangioleiomiomatose , Sistema Linfático , Mutação de Sentido Incorreto , Sirolimo/administração & dosagem , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Humanos , Linfangioleiomiomatose/diagnóstico por imagem , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/enzimologia , Linfangioleiomiomatose/genética , Sistema Linfático/anormalidades , Sistema Linfático/diagnóstico por imagem , Sistema Linfático/enzimologia , Masculino , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Clin Endocrinol (Oxf) ; 88(6): 820-829, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29464738

RESUMO

OBJECTIVE: Mutations in the aggrecan gene (ACAN) have been identified in two autosomal dominant skeletal dysplasias, spondyloepiphyseal dysplasia, Kimberley type (SEDK), and osteochondritis dissecans, as well as in a severe recessive dysplasia, spondyloepimetaphyseal dysplasia, aggrecan type. Next-generation sequencing (NGS) has aided the identification of heterozygous ACAN mutations in individuals with short stature, minor skeletal defects and mild facial dysmorphisms, some of whom have advanced bone age (BA), poor pubertal spurt and early growth cessation as well as precocious osteoarthritis. DESIGN AND METHODS: This study involves clinical and genetic characterization of 16 probands with heterozygous ACAN variants, 14 with short stature and mild skeletal defects (group 1) and two with SEDK (group 2). Subsequently, we reviewed the literature to determine the frequency of the different clinical characteristics in ACAN-positive individuals. RESULTS: A total of 16 ACAN variants were located throughout the gene, six pathogenic mutations and 10 variants of unknown significance (VUS). Interestingly, brachydactyly was observed in all probands. Probands from group 1 with a pathogenic mutation tended to be shorter, and 60% had an advanced BA compared to 0% in those with a VUS. A higher incidence of coxa valga was observed in individuals with a VUS (37% vs 0%). Nevertheless, other features were present at similar frequencies. CONCLUSIONS: ACAN should be considered as a candidate gene in patients with short stature and minor skeletal defects, particularly those with brachydactyly, and in patients with spondyloepiphyseal dysplasia. It is also important to note that advanced BA and osteoarticular complications are not obligatory conditions for aggrecanopathies/aggrecan-associated dysplasias.


Assuntos
Agrecanas/genética , Braquidactilia/genética , Adolescente , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Mutação/genética
10.
Hum Mutat ; 38(11): 1471-1476, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28730625

RESUMO

Craniosynostosis is commonly caused by mutations in fibroblast growth factor receptors (FGFRs), highlighting the essential role of FGF-mediated signaling in skeletal development. We set out to identify the molecular defect in a family referred for craniosynostosis and in whom no mutation was previously detected. Using next-generation sequencing, we identified a novel missense mutation in FGF9. Modeling based upon the crystal structure and functional studies confirmed its pathogenicity showing that it impaired homodimerization and FGFR3 binding. Only one FGF9 mutation has been previously reported in a multigeneration family with multiple synostoses (SYNS3) but no signs of craniosynostosis. In contrast, our family has a greater phenotypic resemblance to that observed in the Fgf9 spontaneous mouse mutant, elbow-knee-synostosis, Eks, with both multiple synostoses and craniosynostosis. We have demonstrated for the first time that mutations in FGF9 cause craniosynostosis in humans and confirm that FGF9 mutations cause multiple synostoses.


Assuntos
Craniossinostoses/diagnóstico , Craniossinostoses/genética , Fator 9 de Crescimento de Fibroblastos/genética , Mutação , Fenótipo , Sinostose/diagnóstico , Sinostose/genética , Substituição de Aminoácidos , Fator 9 de Crescimento de Fibroblastos/química , Estudos de Associação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica , Multimerização Proteica , Radiografia , Transdução de Sinais , Relação Estrutura-Atividade
11.
Am J Med Genet A ; 170(6): 1595-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26991965

RESUMO

Progressive pseudorheumatoid dysplasia (PPD) is a rare autosomal recessive disorder characterized by spondyloepiphyseal dysplasia associated with pain and stiffness of multiple joints, enlargement of the interphalangeal joints, normal inflammatory parameters, and absence of extra-skeletal manifestations. Homozygous or compound heterozygous WISP3 mutations cause PPD. We report two siblings from a non-consanguineous Ecuadorian family with a late-onset spondyloepiphyseal dysplasia. Mutation screening was undertaken in the two affected siblings using a customized skeletal dysplasia next generation sequencing (NGS) panel and confirmed by Sanger sequencing. Two compound heterozygous mutations were identified in WISP3 exon 2, c.[190G>A];[197G>A] (p.[(Gly64Arg)];[(Ser66Asn)]) in the two siblings, both of which had been inherited. The p. (Gly64Arg) mutation has not been previously described whilst the p. (Ser66Asn) mutation has been reported in two PPD families. The two siblings presented with atypical PPD, as they presented during late childhood, yet the severity was different between them. The progression was particularly aggressive in the male sibling who suffered severe scoliosis by the age of 13 years. This case reaffirms the clinical heterogeneity of this disorder and the clinical utility of NGS to genetically diagnose skeletal dysplasias, enabling adequate management, monitorization, and genetic counseling. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Sinalização Intercelular CCN/genética , Estudos de Associação Genética , Artropatias/congênito , Mutação , Fenótipo , Escoliose/diagnóstico , Escoliose/genética , Adolescente , Idade de Início , Alelos , Substituição de Aminoácidos , Análise Mutacional de DNA , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Artropatias/diagnóstico , Artropatias/genética , Masculino , Radiografia , Índice de Gravidade de Doença , Irmãos , Adulto Jovem
12.
Am J Med Genet A ; 170A(1): 210-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26374189

RESUMO

Primordial dwarfism encompasses rare conditions characterized by severe intrauterine growth retardation and growth deficiency throughout life. Recently, three POC1A mutations have been reported in six families with the primordial dwarfism, SOFT syndrome (Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis). Using a custom-designed Next-generation sequencing skeletal dysplasia panel, we have identified two novel homozygous POC1A mutations in two individuals with primordial dwarfism. The severe growth retardation and the facial profiles are strikingly similar between our patients and those described previously. However, one of our patients was diagnosed with severe foramen magnum stenosis and subglottic tracheal stenosis, malformations not previously associated with this syndrome. Our findings confirm that POC1A mutations cause SOFT syndrome and that mutations in this gene should be considered in patients with severe pre- and postnatal short stature, symmetric shortening of long bones, triangular facies, sparse hair and short, thickened distal phalanges.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Nanismo/genética , Hipotricose/genética , Atrofia Muscular/genética , Doenças da Unha/genética , Osteocondrodisplasias/genética , Proteínas/genética , Adolescente , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Humanos , Lactente , Masculino , Doenças da Unha/congênito , Tórax/anormalidades
13.
Expert Rev Proteomics ; 12(6): 579-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26496066

RESUMO

The authors have carried out an investigation of the two "draft maps of the human proteome" published in 2014 in Nature. The findings include an abundance of poor spectra, low-scoring peptide-spectrum matches and incorrectly identified proteins in both these studies, highlighting clear issues with the application of false discovery rates. This noise means that the claims made by the two papers - the identification of high numbers of protein coding genes, the detection of novel coding regions and the draft tissue maps themselves - should be treated with considerable caution. The authors recommend that clinicians and researchers do not use the unfiltered data from these studies. Despite this these studies will inspire further investigation into tissue-based proteomics. As long as this future work has proper quality controls, it could help produce a consensus map of the human proteome and improve our understanding of the processes that underlie health and disease.


Assuntos
Bases de Dados de Proteínas , Proteoma/genética , Humanos , Peptídeos , Proteômica
14.
PLoS Comput Biol ; 11(6): e1004325, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26061177

RESUMO

Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved--all the homologous exons we identified evolved over 460 million years ago--and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles.


Assuntos
Processamento Alternativo/genética , Éxons/genética , Isoformas de Proteínas/genética , Sequência de Aminoácidos , Animais , Biologia Computacional , Bases de Dados Genéticas , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
15.
BMC Bioinformatics ; 14: 345, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24289158

RESUMO

BACKGROUND: Protein kinases are involved in relevant physiological functions and a broad number of mutations in this superfamily have been reported in the literature to affect protein function and stability. Unfortunately, the exploration of the consequences on the phenotypes of each individual mutation remains a considerable challenge. RESULTS: The wKinMut web-server offers direct prediction of the potential pathogenicity of the mutations from a number of methods, including our recently developed prediction method based on the combination of information from a range of diverse sources, including physicochemical properties and functional annotations from FireDB and Swissprot and kinase-specific characteristics such as the membership to specific kinase groups, the annotation with disease-associated GO terms or the occurrence of the mutation in PFAM domains, and the relevance of the residues in determining kinase subfamily specificity from S3Det. This predictor yields interesting results that compare favourably with other methods in the field when applied to protein kinases.Together with the predictions, wKinMut offers a number of integrated services for the analysis of mutations. These include: the classification of the kinase, information about associations of the kinase with other proteins extracted from iHop, the mapping of the mutations onto PDB structures, pathogenicity records from a number of databases and the classification of mutations in large-scale cancer studies. Importantly, wKinMut is connected with the SNP2L system that extracts mentions of mutations directly from the literature, and therefore increases the possibilities of finding interesting functional information associated to the studied mutations. CONCLUSIONS: wKinMut facilitates the exploration of the information available about individual mutations by integrating prediction approaches with the automatic extraction of information from the literature (text mining) and several state-of-the-art databases.wKinMut has been used during the last year for the analysis of the consequences of mutations in the context of a number of cancer genome projects, including the recent analysis of Chronic Lymphocytic Leukemia cases and is publicly available at http://wkinmut.bioinfo.cnio.es.


Assuntos
Biologia Computacional/métodos , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Proteínas Quinases/química , Bases de Dados de Proteínas/tendências , Receptores ErbB/genética , Humanos , Armazenamento e Recuperação da Informação/métodos , Leucemia Linfocítica Crônica de Células B/etiologia , Fenótipo , Valor Preditivo dos Testes , Proteínas Quinases/classificação , Proteínas Quinases/genética , Estabilidade Proteica
16.
BMC Genomics ; 13 Suppl 4: S3, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22759651

RESUMO

BACKGROUND: Most of the many mutations described in human protein kinases are tolerated without significant disruption of the corresponding structures or molecular functions, while some of them have been associated to a variety of human diseases, including cancer. In the last decade, a plethora of computational methods to predict the effect of missense single-nucleotide variants (SNVs) have been developed. Still, current high-throughput sequencing efforts and the concomitant need for massive interpretation of protein sequence variants will demand for more efficient and/or accurate computational methods in the forthcoming years. RESULTS: We present KinMut, a support vector machine (SVM) approach, to identify pathogenic mutations in the protein kinase superfamily. KinMut relays on a combination of sequence-derived features that describe mutations at different levels: (1) Gene level: membership to a specific group in Kinbase and the annotation with GO terms; (2) Domain level: annotated PFAM domains; and (3) Residue level: physicochemical features of amino acids, specificity determining positions, and functional annotations from SwissProt and FireDB. The system has been trained with the set of 3492 human kinase mutations in UniProt for which experimental validation of their pathogenic or neutral character exists. In addition, we discuss the relative importance of these independent properties and their combination for the development of a kinase-specific predictor. Finally, we compare KinMut with other state-of-the-art prediction methods. CONCLUSIONS: Family-specific features appear among the most discriminative information sources, which allow us to produce accurate results in a reliable and very simple way with minimal supervision. Our study aims to broaden the knowledge on the mechanisms by which mutations in the human kinome contribute to disease with a particular focus in cancer. The classifier as well as further documentation is available at http://kinmut.bioinfo.cnio.es/.


Assuntos
Proteínas Quinases/genética , Bases de Dados de Proteínas , Humanos , Mutação , Neoplasias/genética , Máquina de Vetores de Suporte
17.
Genome Res ; 22(7): 1231-42, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22588898

RESUMO

Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans.


Assuntos
Genoma Humano , Proteínas Mutantes Quiméricas/genética , Biossíntese de Proteínas , Sequência de Aminoácidos , Membrana Celular/genética , Membrana Celular/metabolismo , Bases de Dados de Ácidos Nucleicos , Éxons , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Espectrometria de Massas/métodos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Proteínas Mutantes Quiméricas/metabolismo , Especificidade de Órgãos , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Relação Estrutura-Atividade
18.
Mol Biol Evol ; 29(9): 2265-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22446687

RESUMO

Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of "novel" and "putative" protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and strongly suggests that the translation of alternative transcripts may be subject to selective constraints.


Assuntos
Processamento Alternativo , Proteínas/química , Proteínas/genética , Proteômica , Sequência de Aminoácidos , Animais , Domínio Catalítico , Drosophila , Genoma , Humanos , Camundongos , Modelos Moleculares , Anotação de Sequência Molecular , Dados de Sequência Molecular , Degradação do RNAm Mediada por Códon sem Sentido , Peptídeos/química , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/química , Biossíntese de Proteínas , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteínas/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA