Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(2): e202301522, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38085680

RESUMO

INTRODUCTION: Studies prove that the use of medicinal plants is a custom carried out by man since ancient times, the evolution of the pharmaceutical industry makes more people consume more natural products. Currently, we can observe that mouthwashes containing natural compounds have shown a growth in demand in the markets and in the professional community. OBJECTIVE: The present study aims to carry out the chemical characterization and microbiological potential of Piper mikanianum (Kunth) Steud essential oil (EOPm), providing data that allows the development of a low-cost mouthwash formulation aimed at vulnerable communities. METHODS: The evaluation of the antibacterial activity and modulator of bacterial resistance was performed by the microdilution method to determine the minimum inhibitory concentration (MIC). The chemical components were characterized by gas chromatography coupled to mass spectrometry, identified 28 constituents, in which Safrole Phenylpropanoid is the major compound, representing 72.6 % of the total composition, followed by α-pinene (10.7 %), Limonene (2 %), ß-caryophyllene (2 %), E-nerolidol (1.9 %), spathulenol (1.3 %) and camphene (1.1 %). RESULTS: The EOPm showed a MIC minimum inhibitory concentration≥1024 µg/mL for all bacterial strains used in the tests. When the EOPm modulating activity combined with chlorhexidine, mouthwash, ampicillin, gentamicin and penicillin G was evaluated against bacterial resistance, the oil showed significant synergistic activity, reducing the MIC of the products tested in combination, in percentage between 20.6 % to 98 .4 %. CONCLUSIONS: We recommend the expansion of tests with greater variation of EOPm concentration combinations and the products used in this study, as well as toxicity evaluation and in vivo tests, seeking the development of a possible low-cost mouthwash formulation accessible to the most vulnerable population.


Assuntos
Óleos Voláteis , Piper , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antissépticos Bucais/farmacologia , Piper/química , Cromatografia Gasosa-Espectrometria de Massas , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
2.
3 Biotech ; 13(7): 255, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37396469

RESUMO

Essential oils extracted from many plant species have different biological activities, among which microbial activity stands out. Species of the genus Piper have antimicrobial potential against different species of bacteria and fungi. In this sense, the present study aimed to determine the chemical composition of the essential oil from the leaves of Piper gaudichaudianum (EOPG), as well as to investigate their antimicrobial activity and their modulatory effect on the Norfloxacin resistance in the Staphylococcus aureus SA1199B strain overproducer of the NorA efflux pump. Furthermore, their inhibitory activities on the biofilm formation as well as on the cellular differentiation of C. albicans were evaluated. Gas chromatography analysis identified 24 compounds, such as hydrocarbon sesquiterpenes (54.8%) and oxygenated sesquiterpenes (28.5%). To investigate the antimicrobial potential of EOPG against S. aureus, E. coli, and C. albicans, a microdilution assay was performed, and no intrinsic antimicrobial activity was observed. On the other hand, the oil potentiated the activity of Norfloxacin against the SA1199B strain, indicating that EOPG could be used in association with Norfloxacin against S. aureus strains resistant to this antibiotic. EOPG also inhibited S. aureus biofilm formation, as evidenced by the crystal violet assay. In the dimorphism assay, EOPG was able to inhibit the cell differentiation process in C. albicans. Results indicate that EOPG could be used in association with Norfloxacin in the treatment of infections caused by resistant S. aureus strains overproducing the NorA efflux pump. Furthermore, its ability to inhibit the formation of hyphae by C. albicans suggests that EOPG could also be applied in the prevention and/or treatment of fungal infections.

3.
Plants (Basel) ; 12(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37111810

RESUMO

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus are the primary bacteria that cause clinical infections, such as urinary and intestinal infections, pneumonia, endocarditis, and sepsis. Bacterial resistance is an innate natural occurrence in microorganisms, resulting from mutations or the lateral exchange of genetic material. This serves as evidence for the association between drug consumption and pathogen resistance. Evidence has demonstrated that the association between conventional antibiotics and natural products is a promising pharmacological strategy to overcome resistance mechanisms. Considering the large body of research demonstrating the significant antimicrobial activities of Schinus terebinthifolius Raddi, the present study aimed to evaluate the chemical composition and antibiotic-enhancing effects of Schinus terebinthifolius Raddi essential oil (STEO) against the standard and multidrug-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The STEO was extracted by hydrodistillation using a Clevenger-type vacuum rotary evaporator. The Minimum Inhibitory Concentration (MIC) of the STEO was assessed by the microdilution method to evaluate the antibacterial activity. The antibiotic-enhancing activity of the essential oil was assessed by determining the MIC of antibiotics in the presence of a sub-inhibitory concentration (MIC/8) of the natural product. The GC-MS analysis revealed alpha-pinene (24.3%), gamma-muurolene (16.6%), and myrcene (13.7%) as major constituents of the STEO. The STEO potentiated the enhanced antibacterial activity of norfloxacin and gentamicin against all the strains and increased the action of penicillin against the Gram-negative strains. Therefore, it is concluded that although the STEO does not exhibit clinically effective antibacterial activity, its association with conventional antibiotics results in enhanced antibiotic activity.

4.
J Infect Public Health ; 15(3): 373-377, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34656506

RESUMO

In a recent study, our research group demonstrated that the essential oil of Ocotea odorifera (EOOO) and its major compound safrole potentiated the action fluoroquinolones, modulating bacterial resistance possibly due to direct inhibition of efflux pumps. Thus, in the present study, we investigated whether these treatments could enhance the activity of gentamicin and erythromycin against multidrug-resistant (MDR) bacteria. The EOOO was extracted by hydrodistillation, and the phytochemical analysis was performed by gas chromatography coupled to mass spectrometry (GC-MS). The antibiotic-enhancing effect of the EOOO and safrole against MDR strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was analyzed by the broth microdilution method. The chemical analysis confirmed the presence of safrole as a major component among the 16 compounds identified in the EOOO. Both the essential oil and the isolated compound showed clinically relevant antibacterial activities against S. aureus. Regarding the modulation of antibiotic resistance, the EOOO was found to enhance the activity of erythromycin against the strains of P. aeruginosa and S. aureus, as well as improving the action of gentamicin against S. aureus. On the other hand, safrole potentiated the activity of gentamicin against the S. aureus strain alone. It is concluded, therefore, that the EOOO and safrole can enhance the activity of macrolides and aminoglycosides, and as such are useful in the development of therapeutic tools to combat bacterial resistance against these classes of antibiotics.


Assuntos
Ocotea , Óleos Voláteis , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Safrol/farmacologia , Staphylococcus aureus
5.
Arch Microbiol ; 203(6): 3077-3087, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33787988

RESUMO

This study aimed to investigate the chemical composition and antifungal potential of the essential oil of Baccharis trimera (Less.) DC. against Candida strains. The half maximal inhibitory concentration (IC50) was assessed by the microdilution method using the essential oil at a concentration range of 8192 to 8 µg/mL. The minimum fungicide concentration (MFC) was determined by subculture in solid medium. The ability of the essential oil to modulate the activity of antifungals was determined in wells treated simultaneously with the oil at a subinhibitory concentration (MFC/16) and fluconazole (FCZ). The fungal morphology was analyzed by microscopy. Gas chromatography coupled with mass spectrometry (GC/MS) was used to identify the chemical composition. The essential oil presented an CI50 of 11.24 and 1.45 µg/mL, which was found to potentiate the effect of FCZ against Candida albicans. On the other hand, this combined treatment resulted in antagonism against Candida tropicalis and no evident modulation against Candida krusei was observed. The essential oil significantly inhibited hyphae growth. However, with a MFC ≥ 16,384 µg/mL, it is assumed that it has a fungistatic action. The antifungal properties demonstrated in this study might be related to the presence of sesquiterpenes and monoterpenes, and the interaction between them. In conclusion, Baccharis trimera showed promising anti-Candida effects, in addition to potentiating the activity of FCZ against Candida albicans, affecting its morphological transition. Therefore, this species constitutes a source of chemical compounds with the potential to be used in the combat of fungal infections.


Assuntos
Baccharis , Candida , Óleos Voláteis , Antifúngicos/farmacologia , Baccharis/química , Candida/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Pichia/efeitos dos fármacos
6.
Microb Pathog ; 145: 104223, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32376358

RESUMO

Essential oils are secondary metabolites with immense pharmacological potential.These substances are abundantly produced by plants of the family Asteraceae, such as Baccharis coridifolia. Previous studies have demonstrated that this species has pharmacological properties that make it a promising source of new antibacterial agents. Therefore, the present study aimed to evaluate the antibacterial and antibiotic-modulating activity of Baccharis coridifolia essential oil against multidrug-resistant (MDR) strains. The phytochemical analysis was carried out by gas chromatography coupled to Mass Spectroscopy (GC/MS), and realized the Minimum Inhibitory Concentation (MIC) and antibiotic-modulation from the microdilution method in 96-well plates. It was revealed the presence of germacrene D (23.7%), bicyclogermacrene (17.1%), and (E)-caryophyllene (8.4%) as major components. The minimum inhibitory concentration of essential oil against strains of Pseudomonas aeruginosa (512 µg/mL) and Staphylococcus aureus (128 µg/mL) demonstrated clinically relevant antibacterial activity. In addition, the combination of subinhibitory doses of the oil with conventional antibiotics showed synergism, indicating potentiation of the antibacterial effect. In conclusion, the essential oil of Baccharis coridifolia (EOBc) presented antibacterial and antibiotic-modulating activities that place this species as a source of molecules useful in the fight against bacterial resistance.


Assuntos
Baccharis , Óleos Voláteis , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Folhas de Planta
7.
Food Chem Toxicol ; 135: 110987, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31759067

RESUMO

The Piper mikanianum species were investigated by the antimicrobial potential and chemical composition. Chemical analysis was performed by gas chromatography coupled to mass spectrometry (GC/MS). The Minimum Inhibitory Concentration (MIC) as well as the 50% Inhibitory Concentration against Candida strains were determined by microdilution. The effect of the drug-oil combination was also evaluated to verify possible synergism. The Minimum Fungicidal Concentration (MFC) was evaluated by subculturing the microdilution in Petri dishes and the anti-pleomorphism potential of the oil was tested in humid chambers. Chemical analysis revealed safrol as the major compound. The results from the intrinsic activity evaluation of the oil did not reveal a clinical importance, however, it presented a synergistic effect when associated with gentamicin against the multidrug resistant E. coli strain and when associated with fluconazole against fungal strains. Moreover, the oil possessed a fungistatic effect. Total inhibition of filamentous structures occurred in both Candida species in the anti-virulence test. The P. mikanianum essential oil showed a potentiating activity of drugs for which resistance exists and an inhibitory effect of one of the main virulence factors of the Candida genus, morphological transition, which has been previously shown to be responsible for causing invasive infections in human tissues.


Assuntos
Anti-Infecciosos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/farmacologia , Piper/química , Candida/classificação , Candida/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Especificidade da Espécie , Staphylococcus aureus/efeitos dos fármacos
8.
J Photochem Photobiol B ; 199: 111604, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31473430

RESUMO

The indiscriminate use of antibiotics has made bacterial resistance an important public health problem, since many antibiotics have become ineffective. Phototherapy can be considered an alternative to reduce the abusive use of antimicrobials, thus impacting microbial resistance. The objective of this study was to determine the chemical profile and to evaluate the effect of blue LED lights on the antibacterial activity of essential oils from Piper species, as well as their aminoglycoside antibiotic activity modulation using the microdilution method to determine the Minimum Inhibitory Concentration (MIC). The antibiotic activity modulating effect of these oils was also determined using the broth microdilution method with 96-well plates which were exposed to LED light for 20 min. Chemical components were characterized by gas chromatography coupled to mass spectrometry, revealing ß-copaen-4-α-ol, germacrene A and germacrene B as major essential oil constituents for Piper arboreum (OEPar), Piper aduncum (OEPad) and Piper gaudichaudianum (OEPg), respectively. OEPar obtained a MIC of 512 µg/mL against Staphylococcus aureus and a MIC ≥ 1024 µg/mL against Escherichia coli. OEPad and OEPg showed MIC values ≥ 1024 µg/mL against the utilized strains. The essential oils modulated the effect of the antibiotics amikacin and gentamicin, with this effect being potentiated when exposed to blue LED. The blue LED light in the absence of the essential oil also showed an ability to modulate aminoglycoside antibiotic activity in this study, presenting mostly synergistic effects. In conclusion, the results obtained in this study demonstrate that photodynamic therapy using blue LED light interferes with the antibacterial action of P. arboreum, P. aduncum and P. gaudichaudianum essential oils and aminoglycoside antibiotic activity.


Assuntos
Antibacterianos/química , Óleos Voláteis/química , Fotoquimioterapia/métodos , Piper/química , Extratos Vegetais/química , Óleos de Plantas/química , Amicacina/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Gentamicinas/farmacologia , Luz , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA