Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2240: 31-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423224

RESUMO

This chapter presents the protocols for developing of skin equivalents (SE) and reconstructed human epidermis (RHE) models for dermal toxicity evaluation as an alternative method to animal use in research. It provides a detailed protocol for the in vitro reconstruction of human skin from primary keratinocytes, melanocytes, and fibroblasts obtained from foreskin biopsies, including the procedures for reconstruction of a stratified epidermis on a polyester membrane. SE and RHE developed through these methods have been proven suitable not only for dermal toxicity studies, but also for investigating of pathological conditions in the skin, such as diabetes and invasion of melanoma.


Assuntos
Epiderme/efeitos dos fármacos , Cultura Primária de Células/métodos , Testes de Irritação da Pele/métodos , Células Cultivadas , Humanos
2.
Toxicol In Vitro ; 50: 225-235, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29574239

RESUMO

Malignant melanoma is an important type of cancer worldwide due to its aggressiveness and poor survival rate. Significant efforts to understand the biology of melanoma and approaches to treat the advanced disease are focused on targeted gene inhibitors. Frequently mutated genes, such as NRAS, B-RAF and TP53, significantly exceed the frequency of mutations of other genes, emphasizing their importance for future targeted therapies. Considering the antitumor activity of benzothiazolic derivatives, this study aimed to demonstrate the action of benzothiazolic (E)-2-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4-nitrophenol (AFN01) against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of its genetic alterations and mutations, such as the TP53, NRAS and B-RAF genes. The results presented here indicate that AFN01, as a significant cytostatic and cytotoxic drug due to its induction of DNA fragmentation, causes single and double DNA strand breaks, consequently inhibiting cell proliferation, migration and invasion by promoting apoptosis. Our data suggest that AFN01 might be considered as a future therapeutic option for managing melanoma.


Assuntos
Antineoplásicos/farmacologia , Hidrazonas/farmacologia , Nitrofenóis/farmacologia , Tiazóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA , GTP Fosfo-Hidrolases/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteína Supressora de Tumor p53/genética , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA