Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 38(42): 6801-6817, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31406246

RESUMO

Inhibitors of BET proteins (BETi) are anti-cancer drugs that have shown efficacy in pre-clinical settings and are currently in clinical trials for different types of cancer, including non-small cell lung cancer (NSCLC). Currently, no predictive biomarker is available to identify patients that may benefit from this treatment. To uncover the mechanisms of resistance to BETi, we performed a genome-scale CRISPR/Cas9 screening in lung cancer cells. We identified three Hippo pathway genes, LATS2, TAOK1, and NF2, as key determinants for sensitivity to BETi. The knockout of these genes induces resistance to BETi, by promoting TAZ nuclear localization and transcriptional activity. Conversely, TAZ expression promotes resistance to these drugs. We also showed that TAZ, YAP, and their partner TEAD are direct targets of BRD4 and that treatment with BETi downregulates their expression. Noticeably, molecular alterations in one or more of these genes are present in a large fraction of NSCLC patients and TAZ amplification or overexpression correlates with a worse outcome in lung adenocarcinoma. Our data define the central role of Hippo pathway in mediating resistance to BETi and provide a rationale for using BETi to counter-act YAP/TAZ-mediated pro-oncogenic activity.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Células A549 , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/patologia , Núcleo Celular/metabolismo , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/genética
2.
Cancer ; 125(5): 712-725, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30480765

RESUMO

BACKGROUND: Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. METHODS: To understand the molecular bases of aneuploid acute myeloid leukemia (A-AML), this study examined the genomic profile in 42 A-AML cases and 35 euploid acute myeloid leukemia (E-AML) cases. RESULTS: A-AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E-AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A-AML, which was associated with a 3-gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A-AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E-AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. CONCLUSIONS: These findings indicate that aneuploidy-related and leukemia-specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Genômica/métodos , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneuploidia , Ciclo Celular , Bandeamento Cromossômico , Feminino , Dosagem de Genes , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteólise , Sequenciamento do Exoma , Adulto Jovem
3.
Nat Commun ; 9(1): 4514, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375513

RESUMO

We characterize different tumour types in search for multi-tumour drug targets, in particular aiming for drug repurposing and novel drug combinations. Starting from 11 tumour types from The Cancer Genome Atlas, we obtain three clusters based on transcriptomic correlation profiles. A network-based analysis, integrating gene expression profiles and protein interactions of cancer-related genes, allows us to define three cluster-specific signatures, with genes belonging to NF-κB signaling, chromosomal instability, ubiquitin-proteasome system, DNA metabolism, and apoptosis biological processes. These signatures have been characterized by different approaches based on mutational, pharmacological and clinical evidences, demonstrating the validity of our selection. Moreover, we define new pharmacological strategies validated by in vitro experiments that show inhibition of cell growth in two tumour cell lines, with significant synergistic effect. Our study thus provides a list of genes and pathways that could possibly be used, singularly or in combination, for the design of novel treatment strategies.


Assuntos
Redes Reguladoras de Genes , Genômica , Neoplasias/tratamento farmacológico , Mapas de Interação de Proteínas , Proteômica , Apoptose/genética , Instabilidade Cromossômica/genética , DNA/metabolismo , Reposicionamento de Medicamentos , Genes Neoplásicos , Ensaios de Triagem em Larga Escala , Humanos , Terapia de Alvo Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Transcriptoma , Ubiquitina/genética , Ubiquitina/metabolismo
4.
Oncotarget ; 8(14): 23237-23245, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28423572

RESUMO

Changes in blood epigenetic age have been associated with several pathological conditions and have recently been described to anticipate cancer development. In this work, we analyze a publicly available leukocytes methylation dataset to evaluate the relation between DNA methylation age and the prospective development of specific types of cancer. We calculated DNA methylation age acceleration using five state-of-the-art estimators (three multi-site: Horvath, Hannum, Weidner; and two CpG specific: ELOV2 and FHL2) in a cohort including 845 subjects from the EPIC-Italy project and we compared 424 samples that remained cancer-free over the approximately ten years of follow-up with 235 and 166 subjects who developed breast and colorectal cancer, respectively. We show that the epigenetic age estimated from blood DNA methylation data is statistically significantly associated to future breast and male colorectal cancer development. These results are corroborated by survival analysis that shows significant association between age acceleration and cancer incidence suggesting that the chance of developing age-related diseases may be predicted by circulating epigenetic markers, with a dependence upon tumor type, sex and age estimator. These are encouraging results towards the non-invasive and perspective usage of epigenetic biomarkers.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Leucócitos/patologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Neoplasias Colorretais/patologia , Metilação de DNA , Epigenômica , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais
5.
Oncotarget ; 8(8): 12820-12830, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28086223

RESUMO

Colorectal cancer is among the leading causes of cancer death worldwide. Despite numerous molecular characterizations of the phenomenon, the exact dynamics of its onset and progression remain elusive. Colorectal cancer onset has been characterized by changes in DNA methylation profiles, that, owing to the stability of their patterns, are promising candidates to shed light on the molecular events laying at the base of this phenomenon.To exploit this stability and reinforce it, we conducted a meta-analysis on publicly available DNA methylation datasets generated on: normal colorectal, adenoma (ADE) and adenocarcinoma (CRC) samples using the Illumina 450k array, in the systems medicine frame, searching for tumor gene episignatures, to produce a carefully selected list of potential drivers, markers and targets of the disease. The analysis proceeds from a differential meta-analysis of the methylation profiles using an analytical pipeline recently developed by our group [1], through network reconstruction, topological and functional analyses, to finally highlight relevant epigenomic features. Our results show that genes already highlighted for their genetic or transcriptional alteration in colorectal cancer are also differentially methylated, reinforcing -regardless of the level of cellular control- their role in the complex of alterations involved in tumorigenesis.These findings were finally validated in an independent cohort from The Cancer Genome Atlas (TCGA).


Assuntos
Adenocarcinoma/genética , Neoplasias Colorretais/genética , Metilação de DNA/genética , Análise por Conglomerados , Humanos
6.
BMC Bioinformatics ; 17 Suppl 2: 16, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26821617

RESUMO

BACKGROUND: Interest in understanding the mechanisms that lead to a particular composition of the Gut Microbiota is highly increasing, due to the relationship between this ecosystem and the host health state. Particularly relevant is the study of the Relative Species Abundance (RSA) distribution, that is a component of biodiversity and measures the number of species having a given number of individuals. It is the universal behaviour of RSA that induced many ecologists to look for theoretical explanations. In particular, a simple stochastic neutral model was proposed by Volkov et al. relying on population dynamics and was proved to fit the coral-reefs and rain forests RSA. Our aim is to ascertain if this model also describes the Microbiota RSA and if it can help in explaining the Microbiota plasticity. RESULTS: We analyzed 16S rRNA sequencing data sampled from the Microbiota of three different animal species by Jeraldo et al. Through a clustering procedure (UCLUST), we built the Operational Taxonomic Units. These correspond to bacterial species considered at a given phylogenetic level defined by the similarity threshold used in the clustering procedure. The RSAs, plotted in the form of Preston plot, were fitted with Volkov's model. The model fits well the Microbiota RSA, except in the tail region, that shows a deviation from the neutrality assumption. Looking at the model parameters we were able to discriminate between different animal species, giving also a biological explanation. Moreover, the biodiversity estimator obtained by Volkov's model also differentiates the animal species and is in good agreement with the first and second order Hill's numbers, that are common evenness indexes simply based on the fraction of individuals per species. CONCLUSIONS: We conclude that the neutrality assumption is a good approximation for the Microbiota dynamics and the observation that Volkov's model works for this ecosystem is a further proof of the RSA universality. Moreover, the ability to separate different animals with the model parameters and biodiversity number are promising results if we think about future applications on human data, in which the Microbiota composition and biodiversity are in close relationships with a variety of diseases and life-styles.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Bovinos/microbiologia , Galinhas/microbiologia , Microbioma Gastrointestinal , Sus scrofa/microbiologia , Animais , Bactérias/genética , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
7.
BMC Bioinformatics ; 17(Suppl 12): 341, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28185561

RESUMO

BACKGROUND: Detecting somatic mutations in whole exome sequencing data of cancer samples has become a popular approach for profiling cancer development, progression and chemotherapy resistance. Several studies have proposed software packages, filters and parametrizations. However, many research groups reported low concordance among different methods. We aimed to develop a pipeline which detects a wide range of single nucleotide mutations with high validation rates. We combined two standard tools - Genome Analysis Toolkit (GATK) and MuTect - to create the GATK-LODN method. As proof of principle, we applied our pipeline to exome sequencing data of hematological (Acute Myeloid and Acute Lymphoblastic Leukemias) and solid (Gastrointestinal Stromal Tumor and Lung Adenocarcinoma) tumors. We performed experiments on simulated data to test the sensitivity and specificity of our pipeline. RESULTS: The software MuTect presented the highest validation rate (90 %) for mutation detection, but limited number of somatic mutations detected. The GATK detected a high number of mutations but with low specificity. The GATK-LODN increased the performance of the GATK variant detection (from 5 of 14 to 3 of 4 confirmed variants), while preserving mutations not detected by MuTect. However, GATK-LODN filtered more variants in the hematological samples than in the solid tumors. Experiments in simulated data demonstrated that GATK-LODN increased both specificity and sensitivity of GATK results. CONCLUSION: We presented a pipeline that detects a wide range of somatic single nucleotide variants, with good validation rates, from exome sequencing data of cancer samples. We also showed the advantage of combining standard algorithms to create the GATK-LODN method, that increased specificity and sensitivity of GATK results. This pipeline can be helpful in discovery studies aimed to profile the somatic mutational landscape of cancer genomes.


Assuntos
Exoma , Genômica/métodos , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Sensibilidade e Especificidade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA