Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259436

RESUMO

Human beings are actively exposed to ultraviolet (UV) radiation, which is associated with skin cancer. This has encouraged the continuous search for more effective and safer photoprotective formulations. Along with the application of traditional organic sunscreens, there is a growing interest in "green products" containing natural compounds such as plant extracts and oils. This trend is combined with the use of nanotechnology as a tool for optimizing the vehicles of such compounds. Nanoemulsions (NEs) are suitable for the encapsulation of natural compounds, which improves topical treatment. Therefore, we have developed oil-in-water (O/W) nanoemulsions containing 3% buriti oil (BO), incorporated in a 10% vegetal extract of Aloe vera (AV) by means of ultrasonic processing to improve the chemical characteristics of this component and, consequently, its efficacy and safety in pharmaceutical and cosmetic formulations. The composition of the formulation was initially defined in a preliminary study on surfactants where the concentrations of Tween® 80 and Span® 20 were evaluated in relation to particle size and the polydispersity index (PDI). The nanoemulsion was prepared and then chemical sunscreens were incorporated with the aim of developing a sunscreen nanoemulsion called NE-A19. This nanoemulsion was found to be the best formulation due to its stability, droplet size (146.80 ± 2.74), and PDI (0.302 ± 0.088), with a monomodal size distribution. The stability was evaluated over 90 days and showed a low growth in particle size at the end of the study. NE-A19 exhibited good viscosity and organoleptic properties, in addition to an occlusion factor indicating an interesting and higher water holding capacity when compared with a NE without AV (p < 0.05). The in vitro efficacy and safety studies of NE-19A were promising. Its average in vitro sun protection factor value was 49, with a critical wavelength (λc) of 369.7 nm, satisfactory UVA protection, and a UVA/UVB ratio of 0.40, indicating broad spectrum protection against UVA and UVB radiation. Furthermore, NE-19A displayed a good safety profile in dermal keratinocytes. It can be concluded that NE-19A is a promising formulation for carrying natural products, such as buriti oil and AV, associated with synthetic filters in lower concentrations.

2.
Nanotechnology ; 30(42): 425101, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31290755

RESUMO

Increasing resistance to current fungicides is a clinical problem that leads to the need for new treatment strategies. Clove oil (CO) has already been described as having antifungal action. However, it should not be applied directly to the skin as it may be irritating. One option for CO delivery and suitable topical application would be nanoemulsions (NEs). NEs have advantages such as decreased irritant effects and lower dose use. The purpose of this work was the development of NEs containing CO and in vitro evaluation against Candida albicans and Candida glabrata. The NEs were produced by an ultrasonic processor with different proportions of CO and Pluronic® F-127. In order to determine the best composition and ultrasound amplitude, an experimental design was performed. For the evaluation, droplet size and polydispersity index (PdI) were used. After the stability study, in vitro activity against C. albicans and C. glabrata was evaluated. NEs selected for the stability study, with diameter <40 nm and PdI <0.2, remained stable for 420 d. Activity against Candida spp. was improved when the CO was nanoemulsified, for it possibly leads to a better interaction between the active and the microorganisms, mainly in C. albicans.


Assuntos
Óleo de Cravo/química , Emulsões/química , Nanoestruturas/química , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Óleo de Cravo/farmacologia , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Poloxâmero/química , Sonicação
3.
Int J Nanomedicine ; 13: 2827-2837, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785109

RESUMO

BACKGROUND: Propranolol (PPN) is a therapeutic option for the treatment of infantile hemangiomas. This study aimed at the development of nanoemulsion (NE) containing 1% PPN, characterization of the system, and safety studies based on ex vivo permeation, cytotoxicity, and biodistribution in vivo. METHODS: The formulation was developed and characterized in relation to the droplet size, polydispersity index (PDI), pH, zeta potential, and electronic microscopy. Ex vivo permeation studies were used to evaluate the cutaneous retention of PPN in the epidermis and dermis. Cytotoxicity studies were performed in fibroblasts, macrophages, and keratinocytes. In vivo biodistribution assay of the formulations was performed by means of labeling with technetium-99m. RESULTS: NE1 exhibited droplet size of 26 nm, PDI <0.4, pH compatible with the skin, and zeta potential of -20 mV, which possibly contributes to the stability. Electron microscopy showed that the NE presented droplets of nanometric size and spherical shape. NE1 provided excellent stability for PPN. In the ex vivo cutaneous permeation assay, the NE provided satisfactory PPN retention particularly in the dermis, which is the site of drug action. In addition, NE1 promoted cutaneous permeation of the PPN in small amount. In vivo biodistribution showed that the radiolabeled formulation remained in the skin and a small amount reached the bloodstream. NE1 presented low cytotoxicity to fibroblasts, macrophages, and keratinocytes in the concentrations evaluated in the cytotoxicity assay. CONCLUSION: We concluded that the formulation is safe for skin administration; however, cutaneous irritation studies should be performed to confirm the safety of the formulation before clinical studies in patients with infantile hemangiomas.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/administração & dosagem , Nanoestruturas/administração & dosagem , Propranolol/administração & dosagem , Pele/efeitos dos fármacos , Administração Cutânea , Administração Tópica , Animais , Células Cultivadas , Emulsões/química , Emulsões/farmacocinética , Epiderme/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Nanoestruturas/química , Propranolol/farmacocinética , Ratos Wistar , Pele/citologia , Absorção Cutânea , Sus scrofa , Tecnécio , Distribuição Tecidual
4.
J Enzyme Inhib Med Chem ; 33(1): 139-146, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29192555

RESUMO

Sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors targeting the α-class enzyme from the protozoan pathogen Trypanosoma cruzi, responsible of Chagas disease, were recently reported. Although many such derivatives showed low nanomolar activity in vitro, they were inefficient anti-T. cruzi agents in vivo. Here, we show that by formulating such sulfonamides as nanoemulsions in clove (Eugenia caryophyllus) oil, highly efficient anti-protozoan effects are observed against two different strains of T. cruzi. These effects are probably due to an enhanced permeation of the enzyme inhibitor through the nanoemulsion formulation, interfering in this way with the life cycle of the pathogen either by inhibiting pH regulation or carboxylating reactions in which bicarbonate/CO2 are involved. This type of formulation of sulfonamides with T. cruzi CA inhibitory effects may lead to novel therapeutic approaches against this orphan disease.


Assuntos
Antiprotozoários/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Nanoestruturas/química , Sulfonamidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Apoptose/efeitos dos fármacos , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Emulsões/síntese química , Emulsões/química , Emulsões/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Células RAW 264.7 , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Trypanosoma cruzi/crescimento & desenvolvimento
5.
Nanotechnology ; 28(6): 065101, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071592

RESUMO

Photodynamic therapy (PDT) combines light with photosensitizers (PS) for production of reactive oxygen species (ROS) that can kill infectious microorganisms such as bacteria, fungi and protozoa. The application of nanotechnology has enabled the advancement of PDT because many PS are insoluble in water, necessitating a nanocarrier as a physiologically acceptable carrier. Nanoemulsions are efficient nanocarriers for solubilizing liposoluble drugs, like the PS, in water. Cutaneous (CL) and mucocutaneous leishmaniasis (ML) are caused by different species of the genus Leishmania, transmitted to humans by sandfly bites. Parasites are hosted in skin macrophages producing ulcerative lesions. Thus, a topical treatment, effective and inexpensive, for CL and ML is preferable to systemic interventions. There are topical treatments like paromomycin and amphotericin B, but they have many local side effects or a very high cost, limiting their use. This work aimed to develop a zinc phthalocyanine (photosensitizer) oil-in-water nanoemulsion, essential clove oil and polymeric surfactant (Pluronic® F127) for the formulation of a topical delivery system for use in PDT against Leishmania amazonensis and Leishmania infantum. The nanoemulsion was produced by a high-energy method and characterized by size, polydispersity, morphology, pH, content and stability studies. The toxicity in the dark and the photobiological activity of the formulations were evaluated in vitro for Leishmania and macrophages. The formulation presented was pH compatible with topical use, approximately 30 nm in size, with a polydispersity index ≤0.1 and remained stable at room and refrigerator temperature during the stability study (60 days). The zinc phthalocyanine nanoemulsion is effective in PDT against Leishmania spp.; use against skin infections can be a future application of this topical formulation, avoiding the use of oral or injectable medications, decreasing systemic adverse effects.


Assuntos
Portadores de Fármacos , Indóis/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Administração Cutânea , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Óleo de Cravo/química , Composição de Medicamentos/métodos , Emulsões , Concentração de Íons de Hidrogênio , Indóis/química , Isoindóis , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/efeitos da radiação , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/efeitos da radiação , Luz , Camundongos , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Óxido Nítrico , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Poloxâmero/química , Células RAW 264.7 , Compostos de Zinco
6.
Arch Dermatol Res ; 305(6): 535-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23595354

RESUMO

The purpose of the study was to evaluate the effects of a sunscreen formulation on the skin of albino hairless mice subjected to simulated solar light (SSL) in terms of morphological changes. Young adult albino hairless mice HRS/J (n = 36) were used as an experimental model for determining skin photoaging changes. Mice were irradiated with SSL, and the sunscreen (estimated SPF 30, PF-UVA) was obtained from the Pharmacy College/UFRJ, Brazil. The animals were divided into four groups: non-treated (G1), radiation only (G2), sunscreen-treated (G3) and vehicle + radiation (G4). Animals from groups G2, G3 and G4 were irradiated weekly (5 weeks), with no immobilization. One week after the final exposure, the dorsal skin was observed using a dermatoscopic camera. Biopsies were analyzed in order to quantify neovascularization and to evaluate histological aspects of the skin. Neovascularization was also evaluated with immunohistochemical reactions for the Von Willebrand factor. Animals from G2 displayed classical morphological changes denoting skin photoaging: thickening of the epidermis, increased dermal cellularity, follicular keratosis, sebaceous gland hyperplasia, and angiogenesis. Animals from groups G3 and G1 displayed similar morphological profiles, without these changes. Animals from group G4 showed more morphological changes than group G2, emphasizing the relative importance of the putative photosensitizing components present in the vehicle formulation. The extent of the morphological skin changes suggested that the sunscreen formulation was effective against SSL, and showed the importance of assessing the phototoxicity of vehicle formulations.


Assuntos
Albinismo/genética , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Luz Solar/efeitos adversos , Protetores Solares/farmacologia , Animais , Biomarcadores/metabolismo , Biópsia , Química Farmacêutica , Citoproteção , Dermoscopia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Pelados , Neovascularização Patológica , Pele/irrigação sanguínea , Pele/metabolismo , Pele/patologia , Envelhecimento da Pele/patologia , Protetores Solares/química , Fatores de Tempo , Fator de von Willebrand/metabolismo
7.
BMC Biotechnol ; 13: 15, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23414102

RESUMO

BACKGROUND: Hair is composed mainly of keratin protein and a small amount of lipid. Protein hydrolysates, in particular those with low molecular weight distribution have been known to protect hair against chemical and environmental damage. Many types of protein hydrolysates from plants and animals have been used in hair and personal care such as keratin hydrolysates obtained from nails, horns and wool. Most of these hydrolysates are obtained by chemical hydrolysis and hydrothermal methods, but recently hydrolyzed hair keratin, feather keratin peptides, and feather meal peptides have been obtained by enzymatic hydrolysis using Bacillus spp in submerged fermentation. RESULTS: Keratin peptides were obtained by enzymatic hydrolysis of keratinases using Bacillus subtilis AMR. The microorganism was grown on a feather medium, pH 8.0 (1% feathers) and supplemented with 0.01% of yeast extract, for 5 days, at 28°C with agitation. The supernatant containing the hydrolysates was colleted by centrifugation and ultra filtered in an AMICON system using nano-membranes (Millipore - YC05). The Proteins and peptides were analyzed using HPTLC and MALDI-TOF-MS. Commercial preparations of keratin hydrolysates were used as a comparative standard. After five days the feather had been degraded (90-95%) by the peptidases and keratinases of the microorganism. MALDI-TOF mass spectrometry showed multiple peaks that correspond to peptides in the range of 800 to 1079 Daltons and the commercial hydrolysate was in the range of 900 to 1400 Da. HPTLC showed lower molecular mass peptides and amino acids in the enzymatic hydrolysate when compared with the commercial hydrolysate . A mild shampoo and a rinse off conditioner were formulated with the enzymatic hydrolysate and applied to hair fibers to evaluate the hydration, with and without heat, using a Corneometer® CM 825. The hydration was more efficient with heat, suggesting a more complete incorporation of hydrolysates into the fibers. Scanning Electron Microscopy showed deposits of organic matter in the junction of the cuticles that probably collaborates to the sealing of the cuticles, increasing the brightness and softness. CONCLUSIONS: These results show that the enzymatic method to produce keratin peptides for hair care products is an attractive and eco- friendly method with a great potential in the cosmetic industry.


Assuntos
Plumas/metabolismo , Cabelo/patologia , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Bacillus subtilis/metabolismo , Cromatografia Líquida de Alta Pressão , Cabelo/química , Hidrólise , Queratinas/química , Microscopia Eletrônica de Varredura , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Água/química
8.
J Nanosci Nanotechnol ; 12(9): 7155-66, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23035447

RESUMO

Ultraviolet radiation can bring both harm and benefits to human health. Among those harms are erythemas, photosensitivity, photoaging, and the most worrying, skin cancer. Nanoencapsulation of sunscreen agents (SA) by using a biocompatible and biodegradable polymer such as poly(epsilon-caprolactone) (PCL) is advantageous as it increases the retention of UV absorbers in the skin, avoids systemic absorption, and consequently, improves water resistance and stability of the preparation. The aim of this work is to develop, characterize, and study the encapsulation of 3 different SA: 2-ethylhexyl-p-methoxycinnamate, benzophenone-3, and octocrylene in PCL nanoparticles (Nps). Nps were prepared by the solvent emulsification and evaporation method. The process yield was calculated, and the Nps were characterized in terms of size, polydispersity index (PI), morphology, zeta potential (ZP), encapsulation efficiency (EE) (%), and sunscreen agent content (SAC). The final formulations were submitted to the hen's egg test-chorioallantoic membrane (HET-CAM), chorioallantoic membrane-trypan blue staining (CAM-TBS), red blood cell (RBC), Draize tests, in vitro release, in vitro sun protection factor (SPF), UVA protection factor (PF-UVA), and photostability. All the Nps were in the nanometric scale. PI showed monodisperse systems. ZP became more negative as the Np were lyophilized and were added to the formulations. EE varied from 84 to 90%. The SAC went from 44 to 65 microg of sunscreen agents by milligram of Np. The process yield went from 60 to 76%. Nps were predominantly spherical and elliptical forms. The addition of Np diminished the release of the SA. The SPF increased with Np presence and helped to maintain the PF-UVA after irradiation. The HET-CAM assay evaluated the formulation as slightly irritant, CAM-TBS and RBC tests as non irritant, and the Draize test as moderately irritant.


Assuntos
Acrilatos/análise , Benzofenonas/análise , Cinamatos/análise , Nanopartículas , Poliésteres/farmacologia , Protetores Solares/farmacologia , Animais , Embrião de Galinha , Cosméticos , Olho/efeitos dos fármacos , Irritantes/química , Irritantes/farmacologia , Microscopia Eletrônica de Transmissão , Poliésteres/química , Coelhos , Protetores Solares/química , Raios Ultravioleta
9.
Int J Nanomedicine ; 6: 227-38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21499420

RESUMO

In this study, zinc phthalocyanine (ZnPc) was loaded onto poly-ɛ-caprolactone (PCL) nanoparticles (NPs) using a solvent emulsification-evaporation method. The process yield and encapsulation efficiency were 74.2% ± 1.2% and 67.1% ± 0.9%, respectively. The NPs had a mean diameter of 187.4 ± 2.1 nm, narrow distribution size with a polydispersity index of 0.096 ± 0.004, zeta potential of -4.85 ± 0.21 mV, and spherical shape. ZnPc has sustained release, following Higuchi's kinetics. The photobiological activity of the ZnPc-loaded NPs was evaluated on human lung adenocarcinoma A549 cells. Cells were incubated with free ZnPc or ZnPc-loaded NPs for 4 h and then washed with phosphate-buffered saline. Culture medium was added to the wells containing the cells. Finally, the cells were exposed to red light (660 nm) with a light dose of 100 J/cm(2). The cellular viability was determined after 24 h of incubation. ZnPc-loaded NPs and free photosensitizer eliminated about 95.9% ± 1.8% and 28.7% ± 2.2% of A549 cells, respectively. The phototoxicity was time dependent up to 4 h and concentration dependent at 0-5 µg ZnPc. The cells viability decreased with the increase of the light dose in the range of 10-100 J/cm(2). Intense lysis was observed in the cells incubated with the ZnPcloaded NPs and irradiated with red light. ZnPc-loaded PCL NPs are the release systems that promise photodynamic therapy use.


Assuntos
Sistemas de Liberação de Medicamentos , Indóis/administração & dosagem , Nanopartículas/administração & dosagem , Compostos Organometálicos/administração & dosagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Indóis/farmacocinética , Isoindóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanomedicina , Nanopartículas/química , Compostos Organometálicos/farmacocinética , Fármacos Fotossensibilizantes/farmacocinética , Poliésteres/química , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA