Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 2): 132443, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761913

RESUMO

Metal-organic frameworks (MOFs)-based therapy opens a new area for antibiotic-drug free infections treatment. In the present study, chitosan membranes (CS) loaded with two concentrations of copper-MOF 10 mg/20 ml (Cu-MOF10/CS) & 20 mg/20 ml (Cu-MOF20/CS) were prepared by a simple lyophilization procedure. FTIR spectra of Cu-MOF10/CS and Cu-MOF20/CS dressings confirmed absence of any undesirable chemical changes after loading Cu-MOF. The SEM images of the synthesized materials (CS, Cu-MOF10/CS & Cu-MOF20/CS) showed interconnected porous structures. Cytocompatibility of the materials was confirmed by fibroblasts cells culturing and the materials were hemocompatible, with blood clotting index <5 %. Cu-MOF20/CS showed comparatively higher effective antibacterial activity against the tested strains; E. coli (149.2 %), P. aeruginosa (165 %) S. aureus (117.8 %) and MRSA (142 %) as compared to Amikacin, CS and Cu-MOF10/CS membranes. Similarly, Cu-MOF20/CS dressing significantly eradicated the biofilms; P. aeruginosa (37 %) and MRSA (52 %) respectively. In full thickness infected wound rat model, on day 23, Cu-MOF10/CS and Cu-MOF20/CS promoted wound healing up to 87.7 % and 82 % respectively. H&E staining of wounded tissues treated with Cu-MOF10/CS & Cu-MOF20/CS demonstrated enhanced neovascularization and re-epithelization along-with reduced inflammation, while trichrome staining exhibited increased collagen deposition. Overall, this study declares Cu-MOFs loaded chitosan dressings a multifunctional platform for the healing of infected wounds.


Assuntos
Antibacterianos , Bandagens , Biofilmes , Quitosana , Cobre , Liofilização , Estruturas Metalorgânicas , Pseudomonas aeruginosa , Cicatrização , Animais , Quitosana/química , Quitosana/farmacologia , Cicatrização/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Ratos , Pseudomonas aeruginosa/efeitos dos fármacos , Porosidade , Cobre/química , Cobre/farmacologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/terapia , Masculino , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
2.
Dent Mater ; 33(1): 71-83, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842886

RESUMO

OBJECTIVE: The regeneration of periodontal tissues lost as a consequence of destructive periodontal disease remains a challenge for clinicians. Guided tissue regeneration (GTR) has emerged as the most widely practiced regenerative procedure. Aim of this study was to electrospin chitosan (CH) membranes with a low or high degree of fiber orientation and examines their suitability for use as a surface layer in GTR membranes, which can ease integration with the periodontal tissue by controlling the direction of cell growth. METHODS: A solution of CH-doped with polyethylene oxide (PEO) (ratio 95:5) was prepared for electrospinning. Characterization was performed for biophysiochemical and mechanical properties by means of scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, swelling ratio, tensile testing and monitoring degradation using pH analysis, weight profile, ultraviolet-visible (UV-vis) spectroscopy and FTIR analysis. Obtained fibers were also assessed for viability and matrix deposition using human osteosarcoma (MG63) and human embryonic stem cell-derived mesenchymal progenitor (hES-MP) cells. RESULTS: Random and aligned CH fibers were obtained. FTIR analysis showed neat CH spectral profile before and after electrospinning. Electropsun mats were conducive to cellular attachment and viability increased with time. The fibers supported matrix deposition by hES-MPs. Histological sections showed cellular infiltration as well. SIGNIFICANCE: The surface layer would act as seal to prevent junctional epithelium from falling into the defect site and hence maintain space for bone regeneration.


Assuntos
Regeneração Óssea , Quitosana , Regeneração Tecidual Guiada , Periodonto , Regeneração Tecidual Guiada Periodontal , Humanos , Masculino , Membranas Artificiais
3.
Mater Sci Eng C Mater Biol Appl ; 61: 1018-28, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838929

RESUMO

Numerous bone and soft tissue grafting techniques are followed to repair cleft of lip and palate (CLP) defects. In addition to the gold standard surgical interventions involving the use of autogenous grafts, various allogenic and xenogenic graft materials are available for bone regeneration. In an attempt to discover minimally invasive and cost effective treatments for cleft repair, an exceptional growth in synthetic biomedical graft materials have occurred. This study gives an overview of the use of dental materials to repair cleft of lip and palate (CLP). The eligibility criteria for this review were case studies, clinical trials and retrospective studies on the use of various types of dental materials in surgical repair of cleft palate defects. Any data available on the surgical interventions to repair alveolar or palatal cleft, with natural or synthetic graft materials was included in this review. Those datasets with long term clinical follow-up results were referred to as particularly relevant. The results provide encouraging evidence in favor of dental and other related biomedical materials to fill the gaps in clefts of lip and palate. The review presents the various bones and soft tissue replacement strategies currently used, tested or explored for the repair of cleft defects. There was little available data on the use of synthetic materials in cleft repair which was a limitation of this study. In conclusion although clinical trials on the use of synthetic materials are currently underway the uses of autologous implants are the preferred treatment methods to date.


Assuntos
Fissura Palatina/terapia , Materiais Dentários/uso terapêutico , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Biopolímeros/química , Biopolímeros/uso terapêutico , Substitutos Ósseos/uso terapêutico , Cerâmica/química , Cerâmica/uso terapêutico , Fissura Palatina/cirurgia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia
4.
Mater Sci Eng C Mater Biol Appl ; 56: 104-13, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26249571

RESUMO

Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration.


Assuntos
Plásticos Biodegradáveis/química , Nanocompostos/química , Periodonto/efeitos dos fármacos , Piroxicam/química , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Linhagem Celular , Quitosana/química , Chlorocebus aethiops , Durapatita/química , Células Epiteliais/efeitos dos fármacos , Microscopia Eletrônica de Varredura/métodos , Nanofibras/química , Álcool de Polivinil/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Engenharia Tecidual/métodos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA