Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 193: 25-35, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768805

RESUMO

The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N6-methyladenosine (m6A) modifications. Despite the established importance of m6A in the heart, the cardiac role of specific m6A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m6A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.


Assuntos
Homeostase , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Miócitos Cardíacos/metabolismo , Camundongos , Caveolina 1/metabolismo , Caveolina 1/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Miocárdio/metabolismo , Regulação da Expressão Gênica , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos Knockout , Biossíntese de Proteínas
2.
Stem Cell Reports ; 17(9): 2005-2022, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35931076

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide great opportunities for mechanistic dissection of human cardiac pathophysiology; however, hiPSC-CMs remain immature relative to the adult heart. To identify novel signaling pathways driving the maturation process during heart development, we analyzed published transcriptional and epigenetic datasets from hiPSC-CMs and prenatal and postnatal human hearts. These analyses revealed that several components of the MAPK and PI3K-AKT pathways are downregulated in the postnatal heart. Here, we show that dual inhibition of these pathways for only 5 days significantly enhances the maturation of day 30 hiPSC-CMs in many domains: hypertrophy, multinucleation, metabolism, T-tubule density, calcium handling, and electrophysiology, many equivalent to day 60 hiPSC-CMs. These data indicate that the MAPK/PI3K/AKT pathways are involved in cardiomyocyte maturation and provide proof of concept for the manipulation of key signaling pathways for optimal hiPSC-CM maturation, a critical aspect of faithful in vitro modeling of cardiac pathologies and subsequent drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Circ Res ; 129(12): 1086-1101, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34645281

RESUMO

RATIONALE: The initial hypertrophy response to cardiac pressure overload is considered compensatory, but with sustained stress, it eventually leads to heart failure. Recently, a role for recruited macrophages in determining the transition from compensated to decompensated hypertrophy has been established. However, whether cardiac resident immune cells influence the early phase of hypertrophy development has not been established. OBJECTIVE: To assess the role of cardiac immune cells in the early hypertrophy response to cardiac pressure overload induced by transverse aortic constriction (TAC). METHODS AND RESULTS: We performed cytometry by time-of-flight to determine the identity and abundance of immune cells in the heart at 1 and 4 weeks after TAC. We observed a substantial increase in cardiac macrophages 1 week after TAC. We then conducted Cite-Seq single-cell RNA sequencing of cardiac immune cells isolated from 4 sham and 6 TAC hearts. We identified 12 clusters of monocytes and macrophages, categorized as either resident or recruited macrophages, that showed remarkable changes in their abundance between sham and TAC conditions. To determine the role of cardiac resident macrophages early in the response to a hypertrophic stimulus, we used a blocking antibody against macrophage colony-stimulating factor 1 receptor (CD115). As blocking CD115 initially depletes all macrophages, we allowed the replenishment of recruited macrophages by monocytes before performing TAC. This preferential depletion of resident macrophages resulted in enhanced fibrosis and a blunted angiogenesis response to TAC. Macrophage depletion in CCR2 (C-C chemokine receptor type 2) knockout mice showed that aggravated fibrosis was primarily caused by the recruitment of monocyte-derived macrophages. Finally, 6 weeks after TAC these early events lead to depressed cardiac function and enhanced fibrosis, despite complete restoration of cardiac immune cells. CONCLUSIONS: Cardiac resident macrophages are a heterogeneous population of immune cells with key roles in stimulating angiogenesis and inhibiting fibrosis in response to cardiac pressure overload.


Assuntos
Cardiomegalia/metabolismo , Macrófagos/metabolismo , Neovascularização Fisiológica , Animais , Cardiomegalia/patologia , Células Cultivadas , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Análise de Célula Única , Transcriptoma
4.
Methods Mol Biol ; 2158: 323-336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32857384

RESUMO

Genetic lineage tracing is accomplished using bi-transgenic mice, where one allele is altered to express Cre recombinase, and another allele encodes a Cre-dependent genetic reporter protein. Once Cre is activated (constitutive or in response to tamoxifen), the marker gene-expressing cells become indelibly labeled by the reporter protein. Therefore, daughter cells derived from labeled cells are permanently labeled even if the marker gene that drove Cre recombinase expression is no longer expressed in these cells. This system is commonly used to label putative progenitor cells and determine the fate of their progeny. Here, we describe the use of c-kit-based genetic lineage-tracing mouse line as an example and discuss caveats for performing these types of experiments.


Assuntos
Linhagem da Célula/genética , Rastreamento de Células/métodos , Células-Tronco/química , Células-Tronco/metabolismo , Animais , Expressão Gênica , Genes Reporter , Ligação Genética , Proteínas de Fluorescência Verde/genética , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Miócitos Cardíacos/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/análise , Proteínas Proto-Oncogênicas c-kit/genética , Células-Tronco/citologia , Tamoxifeno/farmacologia
5.
FASEB J ; 34(4): 5642-5657, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32100368

RESUMO

The adult mammalian heart has a limited regenerative capacity. Therefore, identification of endogenous cells and mechanisms that contribute to cardiac regeneration is essential for the development of targeted therapies. The side population (SP) phenotype has been used to enrich for stem cells throughout the body; however, SP cells isolated from the heart have been studied exclusively in cell culture or after transplantation, limiting our understanding of their function in vivo. We generated a new Abcg2-driven lineage-tracing mouse model with efficient labeling of SP cells. Labeled SP cells give rise to terminally differentiated cells in bone marrow and intestines. In the heart, labeled SP cells give rise to lineage-traced cardiomyocytes under homeostatic conditions with an increase in this contribution following cardiac injury. Instead of differentiating into cardiomyocytes like proposed cardiac progenitor cells, cardiac SP cells fuse with preexisting cardiomyocytes to stimulate cardiomyocyte cell cycle reentry. Our study is the first to show that fusion between cardiomyocytes and non-cardiomyocytes, identified by the SP phenotype, contribute to endogenous cardiac regeneration by triggering cardiomyocyte cell cycle reentry in the adult mammalian heart.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Diferenciação Celular , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Regeneração , Células da Side Population/citologia , Animais , Transplante de Medula Óssea , Linhagem da Célula , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Células da Side Population/metabolismo
6.
Circulation ; 139(4): 533-545, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30586742

RESUMO

BACKGROUND: N6-Methyladenosine (m6A) methylation is the most prevalent internal posttranscriptional modification on mammalian mRNA. The role of m6A mRNA methylation in the heart is not known. METHODS: To determine the role of m6A methylation in the heart, we isolated primary cardiomyocytes and performed m6A immunoprecipitation followed by RNA sequencing. We then generated genetic tools to modulate m6A levels in cardiomyocytes by manipulating the levels of the m6A RNA methylase methyltransferase-like 3 (METTL3) both in culture and in vivo. We generated cardiac-restricted gain- and loss-of-function mouse models to allow assessment of the METTL3-m6A pathway in cardiac homeostasis and function. RESULTS: We measured the level of m6A methylation on cardiomyocyte mRNA, and found a significant increase in response to hypertrophic stimulation, suggesting a potential role for m6A methylation in the development of cardiomyocyte hypertrophy. Analysis of m6A methylation showed significant enrichment in genes that regulate kinases and intracellular signaling pathways. Inhibition of METTL3 completely abrogated the ability of cardiomyocytes to undergo hypertrophy when stimulated to grow, whereas increased expression of the m6A RNA methylase METTL3 was sufficient to promote cardiomyocyte hypertrophy both in vitro and in vivo. Finally, cardiac-specific METTL3 knockout mice exhibit morphological and functional signs of heart failure with aging and stress, showing the necessity of RNA methylation for the maintenance of cardiac homeostasis. CONCLUSIONS: Our study identified METTL3-mediated methylation of mRNA on N6-adenosines as a dynamic modification that is enhanced in response to hypertrophic stimuli and is necessary for a normal hypertrophic response in cardiomyocytes. Enhanced m6A RNA methylation results in compensated cardiac hypertrophy, whereas diminished m6A drives eccentric cardiomyocyte remodeling and dysfunction, highlighting the critical importance of this novel stress-response mechanism in the heart for maintaining normal cardiac function.


Assuntos
Adenosina/análogos & derivados , Hipertrofia Ventricular Esquerda/enzimologia , Metiltransferases/metabolismo , Miócitos Cardíacos/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Adenosina/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Metiltransferases/deficiência , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais
7.
Nat Commun ; 9(1): 4237, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315164

RESUMO

The mammalian heart has a limited regenerative capacity and typically progresses to heart failure following injury. Here, we defined a hedgehog (HH)-Gli1-Mycn network for cardiomyocyte proliferation and heart regeneration from amphibians to mammals. Using a genome-wide screen, we verified that HH signaling was essential for heart regeneration in the injured newt. Next, pharmacological and genetic loss- and gain-of-function of HH signaling demonstrated the essential requirement for HH signaling in the neonatal, adolescent, and adult mouse heart regeneration, and in the proliferation of hiPSC-derived cardiomyocytes. Fate-mapping and molecular biological studies revealed that HH signaling, via a HH-Gli1-Mycn network, contributed to heart regeneration by inducing proliferation of pre-existing cardiomyocytes and not by de novo cardiomyogenesis. Further, Mycn mRNA transfection experiments recapitulated the effects of HH signaling and promoted adult cardiomyocyte proliferation. These studies defined an evolutionarily conserved function of HH signaling that may serve as a platform for human regenerative therapies.


Assuntos
Coração/fisiologia , Proteínas Hedgehog/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Regeneração/fisiologia , Salamandridae/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Proteínas Hedgehog/genética , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Proteína Proto-Oncogênica N-Myc/genética , Regeneração/genética , Salamandridae/fisiologia , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/genética
8.
Circ Heart Fail ; 11(8): e004867, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30354563

RESUMO

BACKGROUND: Advances in radiotherapy for thoracic cancers have resulted in improvement of survival. However, radiation exposure to the heart can induce cardiotoxicity. No therapy is currently available to inhibit these untoward effects. We examined whether a small tetrapeptide, N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), can counteract radiation-induced cardiotoxicity by inhibiting macrophage-dependent inflammatory and fibrotic pathways. METHODS AND RESULTS: After characterizing a rat model of cardiac irradiation with magnetic resonance imaging protocols, we examined the effects of Ac-SDKP in radiation-induced cardiomyopathy. We treated rats with Ac-SDKP for 18 weeks. We then compared myocardial contractile function and extracellular matrix by cardiac magnetic resonance imaging and the extent of inflammation, fibrosis, and Mac-2 (galectin-3) release by tissue analyses. Because Mac-2 is a crucial macrophage-derived mediator of fibrosis, we performed studies to determine Mac-2 synthesis by macrophages in response to radiation, and change in profibrotic responses by Mac-2 gene depleted cardiac fibroblasts after radiation. Cardiac irradiation diminished myocardial contractile velocities and enhanced extracellular matrix deposition. This was accompanied by macrophage infiltration, fibrosis, cardiomyocyte apoptosis, and cardiac Mac-2 expression. Ac-SDKP strongly inhibited these detrimental effects. Ac-SDKP migrated into the perinuclear cytoplasm of the macrophages and inhibited radiation-induced Mac-2 release. Cardiac fibroblasts lacking the Mac-2 gene showed reduced transforming growth factor ß1, collagen I, and collagen III expression after radiation exposure. CONCLUSIONS: Our study identifies novel cardioprotective effects of Ac-SDKP in a model of cardiac irradiation. These protective effects are exerted by inhibiting inflammation, fibrosis, and reducing macrophage activation. This study shows a therapeutic potential of this endogenously released peptide to counteract radiation-induced cardiomyopathy.


Assuntos
Cardiomiopatias/prevenção & controle , Macrófagos/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiotoxicidade , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Fibrose , Galectina 3/genética , Galectina 3/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células RAW 264.7 , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
9.
Circulation ; 136(24): 2359-2372, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29021323

RESUMO

BACKGROUND: Although cardiac c-kit+ cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit+ cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit+ cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit+ cells. METHODS: We used single-cell sequencing and genetic lineage tracing of c-kit+ cells to determine whether various pathological stimuli would result in different fates of c-kit+ cells. RESULTS: Single-cell sequencing of cardiac CD45-c-kit+ cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit+ cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit+ cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. CONCLUSIONS: These results demonstrate that different pathological stimuli induce different cell fates of c-kit+ cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit+ cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit+ cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit+ cells.


Assuntos
Células Endoteliais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Doxorrubicina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Proteínas Proto-Oncogênicas c-kit/metabolismo , Análise de Sequência de DNA , Análise de Célula Única , Proteína Supressora de Tumor p53/genética
10.
Front Cell Dev Biol ; 4: 102, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27679798

RESUMO

The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies.

11.
Circ Res ; 119(2): 249-60, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27225478

RESUMO

RATIONALE: Mitogen-activated protein kinase (MAPK) signaling regulates the growth response of the adult myocardium in response to increased cardiac workload or pathological insults. The dual-specificity phosphatases (DUSPs) are critical effectors, which dephosphorylate the MAPKs to control the basal tone, amplitude, and duration of MAPK signaling. OBJECTIVE: To examine DUSP8 as a regulator of MAPK signaling in the heart and its impact on ventricular and cardiac myocyte growth dynamics. METHODS AND RESULTS: Dusp8 gene-deleted mice and transgenic mice with inducible expression of DUSP8 in the heart were used here to investigate how this MAPK-phosphatase might regulate intracellular signaling and cardiac growth dynamics in vivo. Dusp8 gene-deleted mice were mildly hypercontractile at baseline with a cardiac phenotype of concentric ventricular remodeling, which protected them from progressing towards heart failure in 2 surgery-induced disease models. Cardiac-specific overexpression of DUSP8 produced spontaneous eccentric remodeling and ventricular dilation with heart failure. At the cellular level, adult cardiac myocytes from Dusp8 gene-deleted mice were thicker and shorter, whereas DUSP8 overexpression promoted cardiac myocyte lengthening with a loss of thickness. Mechanistically, activation of extracellular signal-regulated kinases 1/2 were selectively increased in Dusp8 gene-deleted hearts at baseline and following acute pathological stress stimulation, whereas p38 MAPK and c-Jun N-terminal kinases were mostly unaffected. CONCLUSIONS: These results indicate that DUSP8 controls basal and acute stress-induced extracellular signal-regulated kinases 1/2 signaling in adult cardiac myocytes that then alters the length-width growth dynamics of individual cardiac myocytes, which further alters contractility, ventricular remodeling, and disease susceptibility.


Assuntos
Fosfatases de Especificidade Dupla/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Miócitos Cardíacos/fisiologia , Remodelação Ventricular/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ratos
13.
Nat Med ; 20(12): 1386-93, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25473919

RESUMO

Cardiac regeneration is a rapidly evolving and controversial field of research. The identification some 12 years ago of progenitor cells that reside within the heart spurred enthusiasm for cell-based regenerative therapies. However, recent evidence has called into question both the presence of a biologically important stem cell population in the heart and the ability of exogenously derived cells to promote regeneration through direct formation of new cardiomyocytes. Here, we discuss recent developments that suggest an emerging consensus on the ability of different cell types to regenerate the adult mammalian heart.


Assuntos
Coração/fisiologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/fisiologia , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Consenso , Humanos
14.
Nature ; 509(7500): 337-41, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805242

RESUMO

If and how the heart regenerates after an injury event is highly debated. c-kit-expressing cardiac progenitor cells have been reported as the primary source for generation of new myocardium after injury. Here we generated two genetic approaches in mice to examine whether endogenous c-kit(+) cells contribute differentiated cardiomyocytes to the heart during development, with ageing or after injury in adulthood. A complementary DNA encoding either Cre recombinase or a tamoxifen-inducible MerCreMer chimaeric protein was targeted to the Kit locus in mice and then bred with reporter lines to permanently mark cell lineage. Endogenous c-kit(+) cells did produce new cardiomyocytes within the heart, although at a percentage of approximately 0.03 or less, and if a preponderance towards cellular fusion is considered, the percentage falls to below approximately 0.008. By contrast, c-kit(+) cells amply generated cardiac endothelial cells. Thus, endogenous c-kit(+) cells can generate cardiomyocytes within the heart, although probably at a functionally insignificant level.


Assuntos
Linhagem da Célula , Traumatismos Cardíacos/patologia , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Envelhecimento/fisiologia , Animais , Diferenciação Celular , Fusão Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Coração/crescimento & desenvolvimento , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia , Tamoxifeno/farmacologia
15.
J Mol Cell Cardiol ; 65: 108-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140724

RESUMO

During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury.


Assuntos
Fibrose Endomiocárdica/metabolismo , Fibrose Endomiocárdica/patologia , Hipertensão/patologia , Isquemia Miocárdica/patologia , Pericárdio/embriologia , Pericárdio/patologia , Células-Tronco/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Fibrose Endomiocárdica/embriologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Hipertensão/complicações , Hipertensão/embriologia , Hipertensão/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Antígenos Comuns de Leucócito/metabolismo , Leucócitos/metabolismo , Camundongos , Modelos Biológicos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Pericárdio/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas WT1/metabolismo
16.
Circ Res ; 109(3): 272-80, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21636802

RESUMO

RATIONALE: Paracrine growth factor-mediated crosstalk between cardiac myocytes and nonmyocytes in the heart is critical for programming adaptive cardiac hypertrophy in which myocyte size, capillary density, and the extracellular matrix function coordinately. OBJECTIVE: To examine the role that placental growth factor (PGF) plays in the heart as a paracrine regulator of cardiac adaptation to stress stimulation. METHODS AND RESULTS: PGF is induced in the heart after pressure-overload stimulation, where it is expressed in both myocytes and nonmyocytes. We generated cardiac-specific and adult inducible PGF-overexpressing transgenic mice and analyzed Pgf(-/-) mice to examine the role that this factor plays in cardiac disease and paracrine signaling. Although PGF transgenic mice did not have a baseline phenotype or a change in capillary density, they did exhibit a greater cardiac hypertrophic response, a greater increase in capillary density, and increased fibroblast content in the heart in response to pressure-overload stimulation. PGF transgenic mice showed a more adaptive type of cardiac growth that was protective against signs of failure with pressure overload and neuroendocrine stimulation. Antithetically, Pgf(-/-) mice rapidly died of heart failure within 1 week of pressure overload, they showed an inability to upregulate angiogenesis, and they showed significantly less fibroblast activity in the heart. Mechanistically, we show that PGF does not have a direct effect on cardiomyocytes but works through endothelial cells and fibroblasts by inducing capillary growth and fibroblast proliferation, which secondarily support greater cardiac hypertrophy through intermediate paracrine growth factors such as interleukin-6. CONCLUSIONS: PGF is a secreted factor that supports hypertrophy and cardiac function during pressure overload by affecting endothelial cells and fibroblasts that in turn stimulate and support the myocytes through additional paracrine factors.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Miócitos Cardíacos/fisiologia , Comunicação Parácrina/fisiologia , Proteínas da Gravidez/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Pressão Sanguínea/fisiologia , Circulação Coronária/fisiologia , Células Endoteliais/fisiologia , Matriz Extracelular/fisiologia , Fibroblastos/fisiologia , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Fator de Crescimento Placentário , Proteínas da Gravidez/genética , Estresse Fisiológico/fisiologia
17.
J Am Coll Cardiol ; 49(25): 2430-9, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17599607

RESUMO

OBJECTIVES: The goal of this study was to identify the underlying gene defect in a family with inherited myocardial fibrosis. BACKGROUND: A large family with an autosomal dominantly inherited form of myocardial fibrosis with a highly malignant clinical outcome has been investigated. Because myocardial fibrosis preceded the clinical and echocardiographic signs, we consider the disease to be a hereditary form of cardiac fibrosis. METHODS: Twenty-five family members were clinically evaluated, and 5 unaffected and 8 affected family members were included in a genome-wide linkage study. RESULTS: The highest logarithm of the odds (LOD) score (LOD = 2.6) was found in the region of the lamin AC (LMNA) gene. The LMNA mutation analysis, both by denaturing gradient gel electrophoresis and sequencing, failed to show a mutation. Subsequent Southern blotting, complementary deoxyribonucleic acid sequencing, and multiplex ligation-dependent probe amplification analysis, however, revealed a deletion of the start codon-containing exon and an adjacent noncoding exon. In vitro studies demonstrated that the deletion results in the formation of nuclear aggregates of lamin, suggesting that the mutant allele is being transcribed. CONCLUSIONS: This novel LMNA deletion causes a distinct, highly malignant cardiomyopathy with early-onset primary cardiac fibrosis likely due to an effect of the shortened mutant protein, which secondarily leads to arrhythmias and end-stage cardiac failure.


Assuntos
Fibrose Endomiocárdica/epidemiologia , Fibrose Endomiocárdica/genética , Deleção de Genes , Predisposição Genética para Doença , Lamina Tipo A/genética , Mutação , Adulto , Distribuição por Idade , Biópsia por Agulha , Southern Blotting , Eletrocardiografia , Fibrose Endomiocárdica/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Incidência , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Medição de Risco , Índice de Gravidade de Doença , Distribuição por Sexo , Taxa de Sobrevida
18.
Circulation ; 110(19): 3121-8, 2004 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-15520318

RESUMO

BACKGROUND: Inflammatory mechanisms have been proposed to be important in heart failure (HF), and cytokines have been implicated to add to the progression of HF. However, it is unclear whether such mechanisms are already activated when hypertrophied hearts still appear well-compensated and whether such early mechanisms contribute to the development of HF. METHODS AND RESULTS: In a comprehensive microarray study, galectin-3 emerged as the most robustly overexpressed gene in failing versus functionally compensated hearts from homozygous transgenic TGRmRen2-27 (Ren-2) rats. Myocardial biopsies obtained at an early stage of hypertrophy before apparent HF showed that expression of galectin-3 was increased specifically in the rats that later rapidly developed HF. Galectin-3 colocalized with activated myocardial macrophages. We found galectin-3-binding sites in rat cardiac fibroblasts and the extracellular matrix. Recombinant galectin-3 induced cardiac fibroblast proliferation, collagen production, and cyclin D1 expression. A 4-week continuous infusion of low-dose galectin-3 into the pericardial sac of healthy Sprague-Dawley rats led to left ventricular dysfunction, with a 3-fold differential increase of collagen I over collagen III. Myocardial galectin-3 expression was increased in aortic stenosis patients with depressed ejection fraction. CONCLUSIONS: This study shows that an early increase in galectin-3 expression identifies failure-prone hypertrophied hearts. Galectin-3, a macrophage-derived mediator, induces cardiac fibroblast proliferation, collagen deposition, and ventricular dysfunction. This implies that HF therapy aimed at inflammatory responses may need to be targeted at the early stages of HF and probably needs to antagonize multiple inflammatory mediators, including galectin-3.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Galectina 3/fisiologia , Regulação da Expressão Gênica , Insuficiência Cardíaca/etiologia , Ativação de Macrófagos , Animais , Animais Geneticamente Modificados , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/fisiopatologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/imunologia , Cardiomiopatia Hipertrófica/fisiopatologia , Divisão Celular , Ciclina D1/biossíntese , Ciclina D1/genética , Progressão da Doença , Matriz Extracelular/química , Fibroblastos/química , Galectina 3/análise , Galectina 3/biossíntese , Galectina 3/genética , Galectina 3/farmacologia , Galectina 3/toxicidade , Perfilação da Expressão Gênica , Insuficiência Cardíaca/fisiopatologia , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Volume Sistólico , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA