Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430377

RESUMO

Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.


Assuntos
Metabolismo Energético , Insuficiência Cardíaca , Humanos , Coração , Insuficiência Cardíaca/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Sci Rep ; 9(1): 6055, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988323

RESUMO

Heart failure (HF) is the leading cause of death in the Western world. Pathophysiological processes underlying HF development, including cardiac hypertrophy, fibrosis and inflammation, are controlled by specific microRNAs (miRNAs). Whereas most studies investigate miRNA function in one particular cardiac cell type, their multicellular function is poorly investigated. The present study probed 194 miRNAs -differentially expressed in cardiac inflammatory disease - for regulating cardiomyocyte size, cardiac fibroblasts collagen content, and macrophage polarization. Of the tested miRNAs, 13%, 26%, and 41% modulated cardiomyocyte size, fibroblast collagen production, and macrophage polarization, respectively. Seventeen miRNAs affected all three cellular processes, including miRNAs with established (miR-210) and unknown roles in cardiac pathophysiology (miR-145-3p). These miRNAs with a multi-cellular function commonly target various genes. In-depth analysis in vitro of previously unstudied miRNAs revealed that the observed phenotypical alterations concurred with changes in transcript and protein levels of hypertrophy-, fibrosis- and inflammation-related genes. MiR-145-3p and miR-891a-3p were identified to regulate the fibrotic response, whereas miR-223-3p, miR-486-3p, and miR-488-5p modulated macrophage activation and polarisation. In conclusion, miRNAs are multi-cellular regulators of different cellular processes underlying cardiac disease. We identified previously undescribed roles of miRNAs in hypertrophy, fibrosis, and inflammation, and attribute new cellular effects to various well-known miRNAs.


Assuntos
Cardiomegalia/patologia , Insuficiência Cardíaca/genética , MicroRNAs/metabolismo , Miocardite/imunologia , Miocárdio/patologia , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Cardiomegalia/imunologia , Células Cultivadas , Fibroblastos , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/patologia , Humanos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos , Camundongos , Miocardite/genética , Miocardite/patologia , Miocárdio/citologia , Miocárdio/imunologia , Miócitos Cardíacos , Cultura Primária de Células , Ratos
3.
Eur Heart J ; 39(10): 864-873, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29377983

RESUMO

Aims: Truncating titin variants (TTNtv) are the most prevalent genetic cause of dilated cardiomyopathy (DCM). We aim to study clinical parameters and long-term outcomes related to the TTNtv genotype and determine the related molecular changes at tissue level in TTNtv DCM patients. Methods and results: A total of 303 consecutive and extensively phenotyped DCM patients (including cardiac imaging, Holter monitoring, and endomyocardial biopsy) underwent DNA sequencing of 47 cardiomyopathy-associated genes including TTN, yielding 38 TTNtv positive (13%) patients. At long-term follow-up (median of 45 months, up to 12 years), TTNtv DCM patients had increased ventricular arrhythmias compared to other DCM, but a similar survival. Arrhythmias are especially prominent in TTNtv patients with an additional environmental trigger (i.e. virus infection, cardiac inflammation, systemic disease, toxic exposure). Importantly, cardiac mass is reduced in TTNtv patients, despite similar cardiac function and dimensions at cardiac magnetic resonance. These enhanced life-threatening arrhythmias and decreased cardiac mass in TTNtv DCM patients go along with significant cardiac energetic and matrix alterations. All components of the mitochondrial electron transport chain are significantly upregulated in TTNtv hearts at RNA-sequencing. Also, interstitial fibrosis was augmented in TTNtv patients at histological and transcript level. Conclusion: Truncating titin variants lead to pronounced cardiac alterations in mitochondrial function, with increased interstitial fibrosis and reduced hypertrophy. Those structural and metabolic alterations in TTNtv hearts go along with increased ventricular arrhythmias at long-term follow-up, with a similar survival and overall cardiac function.


Assuntos
Cardiomiopatias , Conectina , Arritmias Cardíacas/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Conectina/genética , Conectina/metabolismo , Conectina/fisiologia , Fibrose/metabolismo , Humanos , Mitocôndrias/metabolismo
4.
Hypertension ; 71(2): 280-288, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255073

RESUMO

Pressure overload causes cardiac fibroblast activation and transdifferentiation, leading to increased interstitial fibrosis formation and subsequently myocardial stiffness, diastolic and systolic dysfunction, and eventually heart failure. A better understanding of the molecular mechanisms underlying pressure overload-induced cardiac remodeling and fibrosis will have implications for heart failure treatment strategies. The microRNA (miRNA)-221/222 family, consisting of miR-221-3p and miR-222-3p, is differentially regulated in mouse and human cardiac pathology and inversely associated with kidney and liver fibrosis. We investigated the role of this miRNA family during pressure overload-induced cardiac remodeling. In myocardial biopsies of patients with severe fibrosis and dilated cardiomyopathy or aortic stenosis, we found significantly lower miRNA-221/222 levels as compared to matched patients with nonsevere fibrosis. In addition, miRNA-221/222 levels in aortic stenosis patients correlated negatively with the extent of myocardial fibrosis and with left ventricular stiffness. Inhibition of both miRNAs during AngII (angiotensin II)-mediated pressure overload in mice led to increased fibrosis and aggravated left ventricular dilation and dysfunction. In rat cardiac fibroblasts, inhibition of miRNA-221/222 derepressed TGF-ß (transforming growth factor-ß)-mediated profibrotic SMAD2 (mothers against decapentaplegic homolog 2) signaling and downstream gene expression, whereas overexpression of both miRNAs blunted TGF-ß-induced profibrotic signaling. We found that the miRNA-221/222 family may target several genes involved in TGF-ß signaling, including JNK1 (c-Jun N-terminal kinase 1), TGF-ß receptor 1 and TGF-ß receptor 2, and ETS-1 (ETS proto-oncogene 1). Our findings show that heart failure-associated downregulation of the miRNA-221/222 family enables profibrotic signaling in the pressure-overloaded heart.


Assuntos
Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Animais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/metabolismo , Cardiomiopatias/metabolismo , Fibroblastos/metabolismo , Fibrose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Proto-Oncogene Mas , Ratos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
5.
Circulation ; 136(8): 747-761, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28611091

RESUMO

BACKGROUND: Cardiovascular diseases remain the predominant cause of death worldwide, with the prevalence of heart failure continuing to increase. Despite increased knowledge of the metabolic alterations that occur in heart failure, novel therapies to treat the observed metabolic disturbances are still lacking. METHODS: Mice were subjected to pressure overload by means of angiotensin-II infusion or transversal aortic constriction. MicroRNA-146a was either genetically or pharmacologically knocked out or genetically overexpressed in cardiomyocytes. Furthermore, overexpression of dihydrolipoyl succinyltransferase (DLST) in the murine heart was performed by means of an adeno-associated virus. RESULTS: MicroRNA-146a was upregulated in whole heart tissue in multiple murine pressure overload models. Also, microRNA-146a levels were moderately increased in left ventricular biopsies of patients with aortic stenosis. Overexpression of microRNA-146a in cardiomyocytes provoked cardiac hypertrophy and left ventricular dysfunction in vivo, whereas genetic knockdown or pharmacological blockade of microRNA-146a blunted the hypertrophic response and attenuated cardiac dysfunction in vivo. Mechanistically, microRNA-146a reduced its target DLST-the E2 subcomponent of the α-ketoglutarate dehydrogenase complex, a rate-controlling tricarboxylic acid cycle enzyme. DLST protein levels significantly decreased on pressure overload in wild-type mice, paralleling a decreased oxidative metabolism, whereas DLST protein levels and hence oxidative metabolism were partially maintained in microRNA-146a knockout mice. Moreover, overexpression of DLST in wild-type mice protected against cardiac hypertrophy and dysfunction in vivo. CONCLUSIONS: Altogether we show that the microRNA-146a and its target DLST are important metabolic players in left ventricular dysfunction.


Assuntos
Aciltransferases/biossíntese , Cardiomegalia/metabolismo , Regulação Enzimológica da Expressão Gênica , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Disfunção Ventricular Esquerda/metabolismo , Aciltransferases/genética , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Ratos , Ratos Endogâmicos Lew , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/prevenção & controle
6.
Cardiovasc Diabetol ; 16(1): 47, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28399917

RESUMO

BACKGROUND: Disturbances in coronary microcirculatory function, such as the endothelial glycocalyx, are early hallmarks in the development of obesity and insulin resistance. Accordingly, in the present study myocardial microcirculatory perfusion during rest and stress was assessed following metformin or sulodexide therapy in a rat model of diet-induced obesity. Additionally, the effect of degradation of the glycocalyx on myocardial perfusion was assessed in chow-fed rats. METHODS: Rats were fed a high fat diet (HFD) for 8 weeks and were divided into a group without therapy, and groups that received the anti-diabetic drug metformin or the glycocalyx-stabilizing drug sulodexide in their drinking water during the last 4 weeks of the feeding period. Myocardial microvascular perfusion was determined using first-pass perfusion MRI before and after adenosine infusion. The effect of HFD on microcirculatory properties was also assessed by sidestream darkfield (SDF) imaging of the gastrocnemius muscle. In an acute experimental setting, hyaluronidase was administered to chow-fed control rats to determine the effect of enzymatical degradation of the glycocalyx on myocardial perfusion. RESULTS: HFD-rats developed central obesity and insulin sensitivity was reduced as evidenced by the marked reduction in insulin-induced phosphorylation of Akt in both cardiac and gastrocnemius muscle. We confirmed our earlier findings that the robust increase in myocardial perfusion in chow-fed rats after an adenosine challenge (+56%, p = 0.002) is blunted in HFD rats (+8%, p = 0.68). In contrast, 4-weeks treatment with metformin or sulodexide partly restored the increase in myocardial perfusion during adenosine infusion in HFD rats (+81%, p = 0.002 and +37%, p = 0.02, respectively). Treating chow-fed rats acutely with hyaluronidase, to enzymatically degrade the glyocalyx, completely blunted the increase in myocardial perfusion during stress. CONCLUSIONS: In early stages of HFD-induced insulin resistance myocardial perfusion becomes compromised, a process that can be countered by treatment with both metformin and sulodexide. The adverse effect of acute glycocalyx degradation and protective effect of long-term sulodexide administration on myocardial perfusion provides indirect evidence, suggesting a role for the glycocalyx in preserving coronary microvascular function in pre-diabetic animals.


Assuntos
Vasos Coronários/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Glicosaminoglicanos/uso terapêutico , Metformina/uso terapêutico , Microcirculação/efeitos dos fármacos , Obesidade/tratamento farmacológico , Animais , Vasos Coronários/fisiopatologia , Glicosaminoglicanos/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/farmacologia , Microcirculação/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Miocárdio , Obesidade/fisiopatologia , Fluxo Pulsátil/efeitos dos fármacos , Fluxo Pulsátil/fisiologia , Ratos , Ratos Wistar
7.
Cardiovasc Diabetol ; 14: 150, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26576929

RESUMO

BACKGROUND: It remains to be established if, and to what extent, the coronary microcirculation becomes compromised during the development of obesity and insulin resistance. Recent studies suggest that changes in endothelial glycocalyx properties contribute to microvascular dysfunction under (pre-)diabetic conditions. Accordingly, early effects of diet-induced obesity on myocardial perfusion and function were studied in rats under baseline and hyperaemic conditions. METHODS: Rats were fed a high fat diet (HFD) for 6 weeks and myocardial microvascular perfusion was determined using first-pass perfusion MRI before and after adenosine infusion. The effect of HFD on microcirculatory properties was also assessed by sidestream darkfield (SDF) imaging of the gastrocnemius muscle. RESULTS: HFD-fed rats developed central obesity and insulin sensitivity was reduced as evidenced by the marked reduction in insulin-induced phosphorylation of Akt in both cardiac and gastrocnemius muscle. Early diet-induced obesity did not lead to hypertension or cardiac hypertrophic remodeling. In chow-fed, control rats a robust increase in cardiac microvascular perfusion was observed upon adenosine infusion (+40%; p < 0.05). In contrast, the adenosine response was abrogated in rats on a HFD (+8%; N.S.). HFD neither resulted in rarefaction or loss of glycocalyx integrity in skeletal muscle, nor reduced staining intensity of the glycocalyx of cardiac capillaries. CONCLUSIONS: Alterations in coronary microcirculatory function as assessed by first-pass perfusion MRI represent one of the earliest obesity-related cardiac adaptations that can be assessed non-invasively. In this early stage of insulin resistance, disturbances in glycocalyx barrier properties appeared not to contribute to the observed changes in coronary microvascular function.


Assuntos
Circulação Coronária , Doença das Coronárias/fisiopatologia , Vasos Coronários/fisiopatologia , Dieta Hiperlipídica , Microcirculação , Microvasos/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Obesidade Abdominal/fisiopatologia , Estado Pré-Diabético/fisiopatologia , Adenosina/administração & dosagem , Animais , Doença das Coronárias/diagnóstico , Doença das Coronárias/etiologia , Doença das Coronárias/metabolismo , Vasos Coronários/metabolismo , Modelos Animais de Doenças , Glicocálix/metabolismo , Hiperemia/fisiopatologia , Resistência à Insulina , Imagem Cinética por Ressonância Magnética , Masculino , Músculo Esquelético/metabolismo , Imagem de Perfusão do Miocárdio/métodos , Miocárdio/metabolismo , Obesidade Abdominal/diagnóstico , Obesidade Abdominal/etiologia , Obesidade Abdominal/metabolismo , Fosforilação , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/etiologia , Estado Pré-Diabético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Fatores de Tempo , Vasodilatadores/administração & dosagem , Remodelação Ventricular
8.
Circulation ; 128(13): 1420-32, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23956210

RESUMO

BACKGROUND: Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this process. We recently reported that microRNA-155 is a key mediator of cardiac inflammation and injury in infectious myocarditis. Here, we investigated the impact of microRNA-155 manipulation in hypertensive heart disease. METHODS AND RESULTS: Genetic loss or pharmacological inhibition of the leukocyte-expressed microRNA-155 in mice markedly reduced cardiac inflammation, hypertrophy, and dysfunction on pressure overload. These alterations were macrophage dependent because in vivo cardiomyocyte-specific microRNA-155 manipulation did not affect cardiac hypertrophy or dysfunction, whereas bone marrow transplantation from wild-type mice into microRNA-155 knockout animals rescued the hypertrophic response of the cardiomyocytes and vice versa. In vitro, media from microRNA-155 knockout macrophages blocked the hypertrophic growth of stimulated cardiomyocytes, confirming that macrophages influence myocyte growth in a microRNA-155-dependent paracrine manner. These effects were at least partly mediated by the direct microRNA-155 target suppressor of cytokine signaling 1 (Socs1) because Socs1 knockdown in microRNA-155 knockout macrophages largely restored their hypertrophy-stimulating potency. CONCLUSIONS: Our findings reveal that microRNA-155 expression in macrophages promotes cardiac inflammation, hypertrophy, and failure in response to pressure overload. These data support the causative significance of inflammatory signaling in hypertrophic heart disease and demonstrate the feasibility of therapeutic microRNA targeting of inflammation in heart failure.


Assuntos
Cardiomegalia/patologia , Insuficiência Cardíaca/patologia , Macrófagos/patologia , MicroRNAs/genética , Miócitos Cardíacos/patologia , Animais , Cardiomegalia/genética , Células Cultivadas , Insuficiência Cardíaca/genética , Humanos , Inflamação/genética , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ratos
9.
PLoS One ; 7(1): e30668, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22295101

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) involves steatosis combined with inflammation, which can progress into fibrosis and cirrhosis. Exploring the molecular mechanisms of NASH is highly dependent on the availability of animal models. Currently, the most commonly used animal models for NASH imitate particularly late stages of human disease. Thus, there is a need for an animal model that can be used for investigating the factors that potentiate the inflammatory response within NASH. We have previously shown that 7-day high-fat-high-cholesterol (HFC) feeding induces steatosis and inflammation in both APOE2ki and Ldlr(-/-) mice. However, it is not known whether the early inflammatory response observed in these mice will sustain over time and lead to liver damage. We hypothesized that the inflammatory response in both models is sufficient to induce liver damage over time. METHODS: APOE2ki and Ldlr(-/-) mice were fed a chow or HFC diet for 3 months. C57Bl6/J mice were used as control. RESULTS: Surprisingly, hepatic inflammation was abolished in APOE2ki mice, while it was sustained in Ldlr(-/-) mice. In addition, increased apoptosis and hepatic fibrosis was only demonstrated in Ldlr(-/-) mice. Finally, bone-marrow-derived-macrophages of Ldlr(-/-) mice showed an increased inflammatory response after oxidized LDL (oxLDL) loading compared to APOE2ki mice. CONCLUSION: Ldlr(-/-) mice, but not APOE2ki mice, developed sustained hepatic inflammation and liver damage upon long term HFC feeding due to increased sensitivity for oxLDL uptake. Therefore, the Ldlr(-/-) mice are a promising physiological model particularly vulnerable for investigating the onset of hepatic inflammation in non-alcoholic steatohepatitis.


Assuntos
Modelos Animais de Doenças , Fígado Gorduroso/genética , Técnicas de Inativação de Genes , Receptores de LDL/deficiência , Receptores de LDL/genética , Animais , Apolipoproteína E2/genética , Apoptose/genética , Células da Medula Óssea/citologia , Colesterol/sangue , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/complicações , Fígado Gorduroso/imunologia , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Hiperlipidemias/complicações , Inflamação/complicações , Células de Kupffer/citologia , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Fatores de Tempo
10.
PLoS One ; 4(4): e5155, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19357774

RESUMO

BACKGROUND: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. METHODS: Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. PRINCIPAL FINDINGS: Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF(165) to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. CONCLUSIONS/SIGNIFICANCE: Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.


Assuntos
Cardiomiopatia Dilatada , Cardiopatias Congênitas/etiologia , Coração , Hipóxia , Animais , Apoptose , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/terapia , Embrião de Galinha/anatomia & histologia , Embrião de Galinha/efeitos dos fármacos , Embrião de Galinha/metabolismo , Galinhas , Conectina , Ecocardiografia , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Coração/anatomia & histologia , Coração/embriologia , Humanos , Hipóxia/complicações , Hipóxia/fisiopatologia , Proteínas Musculares/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Proteínas Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA