Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 262: 122135, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39067270

RESUMO

Rapid sand filters are established and widely applied technologies for groundwater treatment. In these filters, main groundwater contaminants such as iron, manganese, and ammonium are oxidized and removed. Conventionally, intensive aeration is employed to provide oxygen for these redox reactions. While effective, intensive aeration promotes flocculent iron removal, which results in iron oxide flocs that rapidly clog the filter. In this study, we operated two parallel full-scale sand filters at different aeration intensities to resolve the relative contribution of homogeneous, heterogeneous and biological iron removal pathways, and identify their operational controls. Our results show that mild aeration in the LOW filter (5 mg/L O2, pH 6.9) promoted biological iron removal and enabled iron oxidation at twice the rate compared to the intensively aerated HIGH filter (>10 mg/L O2, pH 7.4). Microscopy images showed distinctive twisted stalk-like iron solids, the biosignatures of Gallionella ferruginea, both in the LOW filter sand coatings as well as in its backwash solids. In accordance, 10 times higher DNA copy numbers of G. ferruginea were found in the LOW filter effluent. Clogging by biogenic iron solids was slower than by chemical iron flocs, resulting in lower backwash frequencies and yielding four times more water per run. Ultimately, our results reveal that biological iron oxidation can be actively controlled and favoured over competing physico-chemical routes. The production of more compact and practically valuable iron oxide solids is of outmost interest. We conclude that, although counterintuitive, slowing down iron oxidation in the water before filtration enables rapid iron removal in the biofilter.

2.
Water Res ; 262: 122128, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39053206

RESUMO

Iron-based adsorbents are commonly used to remove arsenic (As) from water for drinking water purposes. Here, we study the role of biological As(III) oxidation on iron-based adsorbents in filters and its effect on overall As uptake. A lab-scale filter with iron oxide coated sand (IOCS), a commonly used adsorbent, was operated with water containing As(III) and As(V), while water samples were taken periodically over its height. As(III) oxidation initiated after approximately 10 days and increased to a first order rate constant of 0.09 s-1 after 57 days resulting in full oxidation of As(III) in <50 s. Consequently, the filter shifted from an As(III) to an As(V) adsorbing filter. Oxidation was not observed after inhibiting the microbial activity using sodium azide confirming its biogenic nature. This implies that As(III) oxidizing biomass can grow on iron-based adsorbents in water filters without requiring inoculation. As the experimental conditions were similar to full-scale As treatment plants, we believe that biological As(III) oxidation is widely overlooked in these systems. Occurrence of biological oxidation is, however, beneficial for removal, as at pH <8 the adsorption capacity for As(V) can be up to 10-fold higher than for As(III). With these new insights, arsenic treatment using iron-based adsorbents can be further optimized. We suggest a more robust new design with a biological active As(III) oxidizing top layer and an As(V) adsorbing bottom layer.

3.
Water Res ; 260: 121923, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878320

RESUMO

Rapid sand filters (RSF) are an established and widely applied technology for the removal of dissolved iron (Fe2+) and ammonium (NH4+) among other contaminants in groundwater treatment. Most often, biological NH4+oxidation is spatially delayed and starts only upon complete Fe2+ depletion. However, the mechanism(s) responsible for the inhibition of NH4+oxidation by Fe2+ or its oxidation (by)products remains elusive, hindering further process control and optimization. We used batch assays, lab-scale columns, and full-scale filter characterizations to resolve the individual impact of the main Fe2+ oxidizing mechanisms and the resulting products on biological NH4+ oxidation. modeling of the obtained datasets allowed to quantitatively assess the hydraulic implications of Fe2+ oxidation. Dissolved Fe2+ and the reactive oxygen species formed as byproducts during Fe2+ oxidation had no direct effect on ammonia oxidation. The Fe3+ oxides on the sand grain coating, commonly assumed to be the main cause for inhibited ammonia oxidation, seemed instead to enhance it. modeling allowed to exclude mass transfer limitations induced by accumulation of iron flocs and consequent filter clogging as the cause for delayed ammonia oxidation. We unequivocally identify the inhibition of NH4+oxidizing organisms by the Fe3+ flocs generated during Fe2+ oxidation as the main cause for the commonly observed spatial delay in ammonia oxidation. The addition of Fe3+ flocs inhibited NH4+oxidation both in batch and column tests, and the removal of Fe3+ flocs by backwashing completely re-established the NH4+removal capacity, suggesting that the inhibition is reversible. In conclusion, our findings not only identify the iron form that causes the inhibition, albeit the biological mechanism remains to be identified, but also highlight the ecological importance of iron cycling in nitrifying environments.


Assuntos
Filtração , Água Subterrânea , Ferro , Nitrificação , Água Subterrânea/química , Ferro/química , Compostos de Amônio , Oxirredução , Amônia , Purificação da Água/métodos
4.
ISME Commun ; 4(1): ycae008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38577582

RESUMO

Nitrate leaching from agricultural soils is increasingly found in groundwater, a primary source of drinking water worldwide. This nitrate influx can potentially stimulate the biological oxidation of iron in anoxic groundwater reservoirs. Nitrate-dependent iron-oxidizing (NDFO) bacteria have been extensively studied in laboratory settings, yet their ecophysiology in natural environments remains largely unknown. To this end, we established a pilot-scale filter on nitrate-rich groundwater to elucidate the structure and metabolism of nitrate-reducing iron-oxidizing microbiomes under oligotrophic conditions mimicking natural groundwaters. The enriched community stoichiometrically removed iron and nitrate consistently with the NDFO metabolism. Genome-resolved metagenomics revealed the underlying metabolic network between the dominant iron-dependent denitrifying autotrophs and the less abundant organoheterotrophs. The most abundant genome belonged to a new Candidate order, named Siderophiliales. This new species, "Candidatus Siderophilus nitratireducens," carries genes central genes to iron oxidation (cytochrome c cyc2), carbon fixation (rbc), and for the sole periplasmic nitrate reductase (nap). Using thermodynamics, we demonstrate that iron oxidation coupled to nap based dissimilatory reduction of nitrate to nitrite is energetically favorable under realistic Fe3+/Fe2+ and NO3-/NO2- concentration ratios. Ultimately, by bridging the gap between laboratory investigations and nitrate real-world conditions, this study provides insights into the intricate interplay between nitrate and iron in groundwater ecosystems, and expands our understanding of NDFOs taxonomic diversity and ecological role.

5.
Water Res ; 252: 121233, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330719

RESUMO

Long-term consumption of groundwater containing elevated levels of arsenic (As) can have severe health consequences, including cancer. To effectively remove As, conventional treatment technologies require expensive chemical oxidants to oxidise neutral arsenite (As(III)) in groundwater to negatively charged arsenate (As(V)), which is more easily removed. Rapid sand filter beds used in conventional aeration-filtration to treat anaerobic groundwater can naturally oxidise As(III) through biological processes but require an additional step to remove the generated As(V), adding complexity and cost. This study introduces a novel approach where As(V), produced through biological As(III) oxidation in a sand filter, is effectively removed within the same filter by embedding and operating an iron electrocoagulation (FeEC) system inside the filter. Operating FeEC within the biological filter achieved higher As(III) removal (81 %) compared to operating FeEC in the filter supernatant (67 %). This performance was similar to an analogous embedded-FeEC system treating As(V)-contaminated water (85 %), confirming the benefits of incorporating FeEC in a biological bed for comparable As(III) and As(V) removal. However, operating FeEC in the sand matrix consumed more energy (14 Wh/m3) compared to FeEC operated in a water matrix (7 Wh/m3). The efficiency of As removal increased and energy requirements decreased in such embedded-FeEC systems by deep-bed infiltration of Fe(III)-precipitates, which can be controlled by adjusting flow rate and pH. This study is one of the first to demonstrate the feasibility of embedding FeEC systems in sand filters for groundwater arsenic removal. Such systems capitalise on biological As(III) oxidation in aeration-filtration, effectively eliminating As(V) within the same setup without the need for chemicals or major modifications.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Compostos Férricos , Arsênio/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Eletrocoagulação
6.
Water Res ; 233: 119805, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868119

RESUMO

Rapid sand filters (RSF) are an established and widely applied technology for groundwater treatment. Yet, the underlying interwoven biological and physical-chemical reactions controlling the sequential removal of iron, ammonia and manganese remain poorly understood. To resolve the contribution and interactions between the individual reactions, we studied two full-scale drinking water treatment plant configurations, namely (i) one dual-media (anthracite and quartz sand) filter and (ii) two single-media (quartz sand) filters in series. In situ and ex situ activity tests were combined with mineral coating characterization and metagenome-guided metaproteomics along the depth of each filter. Both plants exhibited comparable performances and process compartmentalization, with most of ammonium and manganese removal occurring only after complete iron depletion. The homogeneity of the media coating and genome-based microbial composition within each compartment highlighted the effect of backwashing, namely the complete vertical mixing of the filter media. In stark contrast to this homogeneity, the removal of the contaminants was strongly stratified within each compartment, and decreased along the filter height. This apparent and longstanding conflict was resolved by quantifying the expressed proteome at different filter heights, revealing a consistent stratification of proteins catalysing ammonia oxidation and protein-based relative abundances of nitrifying genera (up to 2 orders of magnitude difference between top and bottom samples). This implies that microorganisms adapt their protein pool to the available nutrient load at a faster rate than the backwash mixing frequency. Ultimately, these results show the unique and complementary potential of metaproteomics to understand metabolic adaptations and interactions in highly dynamic ecosystems.


Assuntos
Compostos de Amônio , Água Subterrânea , Purificação da Água , Manganês/química , Ferro , Compostos de Amônio/química , Amônia , Quartzo , Ecossistema , Água Subterrânea/química , Filtração/métodos , Purificação da Água/métodos
7.
Water Res ; 223: 119007, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044797

RESUMO

Groundwater contaminated with arsenic (As) must be treated prior to drinking, as human exposure to As at toxic levels can cause various diseases including cancer. Conventional aeration-filtration applied to anaerobic arsenite (As(III)) contaminated groundwater can remove As(III) by co-oxidizing native iron (Fe(II)) and As(III) with oxygen (O2). However, the As(III) removal efficiency of conventional aeration can be low, in part, because of incomplete As(III) oxidation to readily-sorbed arsenate (As(V)). In this work, we investigated a new approach to enhance As(III) co-removal with native Fe(II) by the anaerobic addition of hydrogen peroxide (H2O2) prior to aeration. Experiments were performed to co-oxidize Fe(II) and As(III) with H2O2 (anaerobically), O2 (aerobically), and by sequentially adding of H2O2 and O2. Aqueous As(III) and As(V) measurements after the reaction were coupled with solid-phase speciation by Fe and As K-edge X-ray absorption spectroscopy (XAS). We found that complete anaerobic oxidation of 100 µM Fe(II) with 100 µM H2O2 resulted in co-removal of 95% of 7 µM As(III) compared to 44% with 8.0-9.0 mg/L dissolved O2. Furthermore, we found that with 100 µM Fe(II), the initial Fe(II):H2O2 ratio was a critical parameter to remove 7 µM As(III) to below the 10 µg/L (0.13 µM) WHO guideline, where ratios of 1:4 (mol:mol) Fe(II):H2O2 led to As(III) removal matching that of 7 µM As(V). The improved As(III) removal with H2O2 was found to occur partly because of the well-established enhanced efficiency of As(III) oxidation in Fe(II)+H2O2 systems relatively to Fe(II)+O2 systems. However, the XAS results unambiguously demonstrated that a large factor in the improved As(III) removal was also due to a systematic decrease in crystallinity, and thus increase in specific surface area, of the generated Fe(III) (oxyhydr)oxides from lepidocrocite in the Fe(II)+O2 system to poorly-ordered Fe(III) precipitates in the Fe(II)+H2O2 system. The combined roles of H2O2 (enhanced As(III) oxidation and structural modification) can be easily overlooked when only aqueous species are measured, but this dual impact must be considered for accurate predictions of As removal in groundwater treatment.


Assuntos
Arsênio , Arsenitos , Água Subterrânea , Poluentes Químicos da Água , Arseniatos , Arsênio/química , Arsenitos/química , Compostos Férricos/química , Compostos Ferrosos/química , Água Subterrânea/química , Humanos , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Óxidos/química , Oxigênio , Poluentes Químicos da Água/química
8.
Water Res ; 217: 118345, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460977

RESUMO

Iron in anaerobic groundwater is commonly removed by oxidation followed by sand filtration. This produces large volumes of iron(III)(hydr)oxide sludge with little value. Our research investigates the novel concept of anaerobic iron(II) recovery from groundwater as the valuable mineral vivianite (Fe3(PO4)2 • 8 H2O) by the addition of phosphate to the water. We found that vivianite precipitated both in synthetic and natural groundwater when the saturation index (SI) was higher than 4. The SI can be increased by elevating the pH, which allows for iron removal at lower concentrations. Anaerobic iron removal reached 93.7% in natural groundwater, which increased further to 99.9% after a subsequent aeration step. Vivianite precipitation followed second order kinetics with a rate constant of 2.3 M-1s-1 and the sludge volume decreased by two third compared to iron oxidation. We therefore conclude that anaerobic iron removal is a promising new approach towards sustainable groundwater treatment.


Assuntos
Água Subterrânea , Ferro , Anaerobiose , Compostos Ferrosos , Fosfatos/análise , Esgotos , Eliminação de Resíduos Líquidos
9.
Water Res ; 202: 117404, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271453

RESUMO

Storage containers are usually used to provide a constant water head in decentralized, community groundwater treatment systems for the removal of iron (Fe) and arsenic (As). However, the commonly practiced aeration prior to storage assists in rapid and complete Fe2+ oxidation, resulting in poor As removal, despite sufficient native-Fe2+ in the source water. In this study, it was found that application of anoxic storage enhanced As removal from groundwater, containing ≥300 µg/L of As(III) and 2.33 mg/L of Fe2+ in an As affected village of Rajshahi district in Bangladesh. Although the oxidation of Fe2+ and As(III) during oxic storage was considerably faster, the As/Fe removal ratio was higher during anoxic storage (61-80±5 µgAs/mgFe) compared to the oxic storage (45±5 µgAs/mgFe). This higher As removal efficacy in anoxic storage containers could not be attributed to the speciation of As, since As(V) concentrations were higher during oxic storage due to more favorable abiotic (As(III) oxidation by O2 and Fenton-like intermediates) and biotic (As(III) oxidizing bacteria, e.g., Sideroxydans, Gallionella, Hydrogenophaga) conditions. The continuous, in-situ hydrous ferric oxide floc formation during flow-through operation, and the favorable lower pH aiding higher sorption capacities for the gradually formed As(V) likely contributed to the improved performance in the anoxic storage containers.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Arsênio/análise , Bangladesh , Compostos Férricos , Ferro/análise , Oxirredução , Poluentes Químicos da Água/análise
10.
J Hazard Mater ; 411: 124823, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858074

RESUMO

Generally, abstracted groundwater is aerated, leading to iron (Fe2+) oxidation to Fe3+ and precipitation as Fe3+-(hydr)oxide (HFO) flocs. This practice of passive groundwater treatment, however, is not considered a barrier for arsenic (As), as removal efficiencies vary widely (15-95%), depending on Fe/As ratio. This study hypothesizes that full utilization of the adsorption capacity of groundwater native-Fe2+ based HFO flocs is hampered by rapid Fe2+ oxidation-precipitation during aeration before or after storage. Therefore, delaying Fe2+ oxidation by the introduction of an anoxic storage step before aeration-filtration was investigated for As(III) oxidation and removal in Rajshahi (Bangladesh) with natural groundwater containing 329(±0.05) µgAs/L. The results indicated that As(III) oxidation in the oxic storage was higher with complete and rapid Fe2+ oxidation (2±0.01 mg/L) than in the anoxic storage system, where Fe2+ oxidation was partial (1.03±0.32 mg/L), but the oxidized As(V)/Fe removal ratio was comparatively higher for the anoxic storage system. The low pH (6.9) and dissolved oxygen (DO) concentration (0.24 mg/L) in the anoxic storage limited the rapid oxidation of Fe2+ and facilitated more As(V) removal. The groundwater native-Fe2+ (2.33±0.03 mg/L) removed 61% of As in the oxic system (storage-aeration-filtration), whereas 92% As removal was achieved in the anoxic system.

11.
Water Res ; 188: 116500, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059157

RESUMO

In this paper we analyse the feasibility of low voltage iron electrocoagulation as a means of municipal secondary effluent treatment with a focus on removal of microbial indicators, Antibiotic Resistant Bacteria (ARB) and nutrients. A laboratory scale batch unit equipped with iron electrodes was used on synthetic and real secondary effluent from a municipal wastewater treatment plant. Synthetic secondary effluent was separately assayed with spiked Escherichia coli WR1 and with bacteriophage ΦX174, while real effluent samples were screened before and after treatment for E. coli, Extended Spectrum Betalactamase-producing E. coli, Enterococci, Vancomycin Resistant Enterococci, Clostridium perfringens spores and somatic coliphages. Charge dosage (CD) and charge dosage rate (CDR) were used as the main process control parameters. Experiments with synthetic secondary effluent showed >4log10 and >5log10 removal for phage ΦX174 and for E. coli WR1, respectively. In real effluents, bacterial indicator removal exceeded 3.5log10, ARB were removed below detection limit (≥2.5log10), virus removal reached 2.3log10 and C. perfringens spore removal exceeded 2.5log10. Experiments in both real and synthetic wastewater showed that bacterial removal increased with increasing CD and decreasing CDR. Virus removal increased with increasing CD but was irresponsive to CDR. C. perfringens spore removal increased with increasing CD yet reached a removal plateau, being also irresponsive to CDR. Phosphate removal exceeded 99%, while total nitrogen and chemical oxygen demand removal were below 15% and 58%, respectively. Operational cost estimates were made for power and iron plate consumption, and were found to be in the range of 0.01 to 0.24€/m3 for the different assayed configurations. In conclusion, low voltage Fe-EC is a promising technology for pathogen reduction of secondary municipal effluents, with log10 removals comparable to those achieved by conventional disinfection methods such as chlorination, UV or ozonation.


Assuntos
Águas Residuárias , Purificação da Água , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos , Bactérias , Eletrocoagulação , Escherichia coli , Indicadores e Reagentes , Ferro , Eliminação de Resíduos Líquidos , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA