Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 22(3): 361-372, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497519

RESUMO

Studies on plant-pathogen interactions often involve monitoring disease symptoms or responses of the host plant to pathogen-derived immunogenic patterns, either visually or by staining the plant tissue. Both these methods have limitations with respect to resolution, reproducibility, and the ability to quantify the results. In this study we show that red light detection by the red fluorescent protein (RFP) channel of a multipurpose fluorescence imaging system that is probably available in many laboratories can be used to visualize plant tissue undergoing cell death. Red light emission is the result of chlorophyll fluorescence on thylakoid membrane disassembly during the development of a programmed cell death process. The activation of programmed cell death can occur during either a hypersensitive response to a biotrophic pathogen or an apoptotic cell death triggered by a necrotrophic pathogen. Quantifying the intensity of the red light signal enables the magnitude of programmed cell death to be evaluated and provides a readout of the plant immune response in a faster, safer, and nondestructive manner when compared to previously developed chemical staining methodologies. This application can be implemented to screen for differences in symptom severity in plant-pathogen interactions, and to visualize and quantify in a more sensitive and objective manner the intensity of the plant response on perception of a given immunological pattern. We illustrate the utility and versatility of the method using diverse immunogenic patterns and pathogens.


Assuntos
Apoptose , Arabidopsis/fisiologia , Interações Hospedeiro-Patógeno , Lilium/fisiologia , Nicotiana/fisiologia , Arabidopsis/citologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Luz , Lilium/genética , Lilium/imunologia , Lilium/microbiologia , Imagem Óptica , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/efeitos da radiação , Reprodutibilidade dos Testes , Nicotiana/imunologia , Nicotiana/microbiologia , Nicotiana/efeitos da radiação
2.
Plant Cell Environ ; 34(12): 2183-99, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883288

RESUMO

Bundle-sheath conductance (g(bs) ) affects CO(2) leakiness, and, therefore, the efficiency of the CO(2) -concentrating mechanism (CCM) in C(4) photosynthesis. Whether and how g(bs) varies with leaf age and nitrogen status is virtually unknown. We used a C(4) -photosynthesis model to estimate g(bs) , based on combined measurements of gas exchange and chlorophyll fluorescence on fully expanded leaves of three different ages of maize (Zea mays L.) plants grown under two contrasting nitrogen levels. Nitrogen was replenished weekly to maintain leaf nitrogen content (LNC) at a similar level across the three leaf ages. The estimated g(bs) values on leaf-area basis ranged from 1.4 to 10.3 mmol m(-2) s(-1) and were affected more by LNC than by leaf age, although g(bs) tended to decrease as leaves became older. When converted to resistance (r(bs) = 1/g(bs)), r(bs) decreased monotonically with LNC. The correlation was presumably associated with nitrogen effects on leaf anatomy such as on wall thickness of bundle-sheath cells. Despite higher g(bs), meaning less efficient CCM, the calculated loss due to photorespiration was still low for high-nitrogen leaves. Under the condition of ambient CO(2) and saturating irradiance, photorespiratory loss accounted for 3-5% of fixed carbon for the high-nitrogen, versus 1-2% for the low-nitrogen, leaves.


Assuntos
Dióxido de Carbono/metabolismo , Clorofila/análise , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Zea mays/fisiologia , Fluorescência , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA