Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(23): eabq7595, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294768

RESUMO

Autoimmune limbic encephalitis (ALE) presents with new-onset mesial temporal lobe seizures, progressive memory disturbance, and other behavioral and cognitive changes. CD8 T cells are considered to play a key role in those cases where autoantibodies (ABs) target intracellular antigens or no ABs were found. Assessment of such patients presents a clinical challenge, and novel noninvasive imaging biomarkers are urgently needed. Here, we demonstrate that visualization of the translocator protein (TSPO) with [18F]DPA-714-PET-MRI reveals pronounced microglia activation and reactive gliosis in the hippocampus and amygdala of patients suspected with CD8 T cell ALE, which correlates with FLAIR-MRI and EEG alterations. Back-translation into a preclinical mouse model of neuronal antigen-specific CD8 T cell-mediated ALE allowed us to corroborate our preliminary clinical findings. These translational data underline the potential of [18F]DPA-714-PET-MRI as a clinical molecular imaging method for the direct assessment of innate immunity in CD8 T cell-mediated ALE.


Assuntos
Encefalite Límbica , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Encefalite Límbica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
2.
Dev Neurosci ; 45(2): 53-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36538906

RESUMO

Gangliogliomas (GGs), composed of dysmorphic neurons and neoplastic astroglia, represent the most frequent tumor entity associated with chronic recurrent epileptic seizures. So far, a systematic analysis of potential differences in neurochemical profiles of dysmorphic tumoral neurons as well as neurons of the peritumoral microenvironment (PTME) was hampered by the inability to unequivocally differentiate between the distinct neuronal components in human GG biopsies. Here, we have applied a novel GG mouse model that allows to clearly resolve the neurochemical profiles of GG-intrinsic versus PTME neurons. For this purpose, glioneuronal tumors in mice were induced by intraventricular in utero electroporation (IUE) of piggyBac-based plasmids for BRAFV600E and activated Akt (AktT308D/S473D, further referred to as AktDD) and analyzed neurochemically by immunocytochemistry against specific marker proteins. IUE of BRAFV600E/AktDD in mice resulted in tumors with the morphological features of human GGs. Our immunocytochemical analysis revealed a strong reduction of GABAARα1 immunoreactivity in the tumor compared to the PTME. In contrast, the extent of NMDAR1 immunoreactivity in the tumor appeared comparable to the PTME. Interestingly, tumor cells maintained the potential to express both receptors. Fittingly, the abundance of the presynaptic vesicular neurotransmitter transporters VGLUT1 and VGAT was also decreased in the tumor. Additionally, the fraction of parvalbumin and somatostatin nonneoplastic interneurons was reduced. In conclusion, changes in the levels of key proteins in neurotransmitter signaling suggest a loss of synapses and may thereby lead to neuronal network alterations in mouse GGs.


Assuntos
Neoplasias Encefálicas , Epilepsia , Ganglioglioma , Humanos , Camundongos , Animais , Ganglioglioma/complicações , Ganglioglioma/metabolismo , Ganglioglioma/patologia , Convulsões , Neurônios/metabolismo , Epilepsia/complicações , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Microambiente Tumoral
3.
Acta Neuropathol ; 144(1): 107-127, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551471

RESUMO

Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Convulsões Febris , Proteínas de Peixe-Zebra/metabolismo , Animais , Epilepsia/genética , Epilepsia do Lobo Temporal/genética , Genômica , Gliose/patologia , Hipocampo/patologia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Esclerose/patologia , Convulsões Febris/complicações , Convulsões Febris/genética , Peixe-Zebra
4.
Neuro Oncol ; 24(5): 741-754, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34865163

RESUMO

BACKGROUND: Developmental brain tumors harboring BRAFV600E somatic mutation are diverse. Here, we describe molecular factors that determine BRAFV600E-induced tumor biology and function. METHODS: Intraventricular in utero electroporation in combination with the piggyBac transposon system was utilized to generate developmental brain neoplasms, which were comprehensively analyzed with regard to growth using near-infrared in-vivo imaging, transcript signatures by RNA sequencing, and neuronal activity by multielectrode arrays. RESULTS: BRAF  V600E expression in murine neural progenitors elicits benign neoplasms composed of enlarged dysmorphic neurons and neoplastic astroglia recapitulating ganglioglioma (GG) only in concert with active Akt/mTOR-signaling. Purely glial tumors resembling aspects of polymorphous low-grade neuroepithelial tumors of the young (PLNTYs) emerge from BRAFV600E alone. Additional somatic Trp53-loss is sufficient to generate anaplastic GGs (aGGs) with glioneuronal clonality. Functionally, only BRAFV600E/pAkt tumors intrinsically generate substantial neuronal activity and show enhanced relay to adjacent tissue conferring high epilepsy propensity. In contrast, PLNTY- and aGG models lack significant spike activity, which appears in line with the glial differentiation of the former and a dysfunctional tissue structure combined with reduced neuronal transcript signatures in the latter. CONCLUSION: mTOR-signaling and Trp53-loss critically determine the biological diversity and electrical activity of BRAFV600E-induced tumors.


Assuntos
Neoplasias Encefálicas , Ganglioglioma , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Ganglioglioma/genética , Humanos , Camundongos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
J Neurosci ; 41(39): 8111-8125, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34400520

RESUMO

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that, during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ third-order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, whereas excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and inhibitory synapse maintenance.SIGNIFICANCE STATEMENT We show that dysmorphic neurons of human epileptogenic brain lesions have decreased levels of the Ste20-like kinase (SLK). Decreasing SLK expression in mouse neurons revealed that SLK has essential functions in forming the neuronal dendritic tree and in maintaining inhibitory connections with neighboring neurons.


Assuntos
Córtex Cerebral/metabolismo , Dendritos/genética , Inibição Neural/genética , Proteínas Serina-Treonina Quinases/genética , Sinapses/genética , Transmissão Sináptica/fisiologia , Adolescente , Adulto , Idoso , Animais , Córtex Cerebral/patologia , Criança , Pré-Escolar , Dendritos/metabolismo , Dendritos/patologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Adulto Jovem
6.
Epilepsia ; 62(1): e29-e34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319393

RESUMO

Increasing evidence indicates the pathogenetic relevance of regulatory genomic motifs for variability in the manifestation of brain disorders. In this context, cis-regulatory effects of single nucleotide polymorphisms (SNPs) on gene expression can contribute to changing transcript levels of excitability-relevant molecules and episodic seizure manifestation in epilepsy. Biopsy specimens of patients undergoing epilepsy surgery for seizure relief provide unique insights into the impact of promoter SNPs on corresponding mRNA expression. Here, we have scrutinized whether two linked regulatory SNPs (rs2744575; 4779C > G and rs4646830; 4854C > G) located in the aldehyde dehydrogenase 5a1 (succinic semialdehyde dehydrogenase; ALDH5A1) gene promoter are associated with expression of corresponding mRNAs in epileptic hippocampi (n = 43). The minor ALDH5A1-GG haplotype associates with significantly lower ALDH5A1 transcript abundance. Complementary in vitro analyses in neural cell cultures confirm this difference and further reveal a significantly constricted range for the minor ALDH5A1 haplotype of promoter activity regulation through the key epileptogenesis transcription factor Egr1 (early growth response 1). The present data suggest systematic analyses in human hippocampal tissue as a useful approach to unravel the impact of epilepsy candidate SNPs on associated gene expression. Aberrant ALDH5A1 promoter regulation in functional terms can contribute to impaired γ-aminobutyric acid homeostasis and thereby network excitability and seizure propensity.


Assuntos
Epilepsia do Lobo Temporal/genética , Hipocampo/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Succinato-Semialdeído Desidrogenase/genética , Animais , Linhagem Celular , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Perfilação da Expressão Gênica , Haplótipos , Hipocampo/patologia , Humanos , Técnicas In Vitro , Camundongos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Ratos , Esclerose
7.
Ann Neurol ; 89(4): 666-685, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368582

RESUMO

OBJECTIVE: Limbic encephalitis (LE) comprises a spectrum of inflammatory changes in affected brain structures including the presence of autoantibodies and lymphoid cells. However, the potential of distinct lymphocyte subsets alone to elicit key clinicopathological sequelae of LE potentially inducing temporal lobe epilepsy (TLE) with chronic spontaneous seizures and hippocampal sclerosis (HS) is unresolved. METHODS: Here, we scrutinized pathogenic consequences emerging from CD8+ T cells targeting hippocampal neurons by recombinant adeno-associated virus-mediated expression of the model-autoantigen ovalbumin (OVA) in CA1 neurons of OT-I/RAG1-/- mice (termed "OVA-CD8+ LE model"). RESULTS: Viral-mediated antigen transfer caused dense CD8+ T cell infiltrates confined to the hippocampal formation starting on day 5 after virus transduction. Flow cytometry indicated priming of CD8+ T cells in brain-draining lymph nodes preceding hippocampal invasion. At the acute model stage, the inflammatory process was accompanied by frequent seizure activity and impairment of hippocampal memory skills. Magnetic resonance imaging scans at day 7 of the OVA-CD8+ LE model revealed hippocampal edema and blood-brain barrier disruption that converted into atrophy until day 40. CD8+ T cells specifically targeted OVA-expressing, SIINFEKL-H-2Kb -positive CA1 neurons and caused segmental apoptotic neurodegeneration, astrogliosis, and microglial activation. At the chronic model stage, mice exhibited spontaneous recurrent seizures and persisting memory deficits, and the sclerotic hippocampus was populated with CD8+ T cells escorted by NK cells. INTERPRETATION: These data indicate that a CD8+ T-cell-initiated attack of distinct hippocampal neurons is sufficient to induce LE converting into TLE-HS. Intriguingly, the role of CD8+ T cells exceeds neurotoxic effects and points to their major pathogenic role in TLE following LE. ANN NEUROL 2021;89:666-685.


Assuntos
Linfócitos T CD8-Positivos/patologia , Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/patologia , Encefalite Límbica/complicações , Encefalite Límbica/patologia , Animais , Barreira Hematoencefálica/patologia , Região CA1 Hipocampal/patologia , Epilepsia do Lobo Temporal/psicologia , Hipocampo/patologia , Proteínas de Homeodomínio/genética , Encefalite Límbica/psicologia , Linfonodos/patologia , Imageamento por Ressonância Magnética , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia , Ovalbumina/genética , Ovalbumina/imunologia , Fragmentos de Peptídeos/genética , Convulsões/genética , Convulsões/patologia
8.
Cereb Cortex ; 30(7): 3921-3937, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147726

RESUMO

The balance of excitation and inhibition is essential for cortical information processing, relying on the tight orchestration of the underlying subcellular processes. Dynamic transcriptional control by DNA methylation, catalyzed by DNA methyltransferases (DNMTs), and DNA demethylation, achieved by ten-eleven translocation (TET)-dependent mechanisms, is proposed to regulate synaptic function in the adult brain with implications for learning and memory. However, focus so far is laid on excitatory neurons. Given the crucial role of inhibitory cortical interneurons in cortical information processing and in disease, deciphering the cellular and molecular mechanisms of GABAergic transmission is fundamental. The emerging relevance of DNMT and TET-mediated functions for synaptic regulation irrevocably raises the question for the targeted subcellular processes and mechanisms. In this study, we analyzed the role dynamic DNA methylation has in regulating cortical interneuron function. We found that DNMT1 and TET1/TET3 contrarily modulate clathrin-mediated endocytosis. Moreover, we provide evidence that DNMT1 influences synaptic vesicle replenishment and GABAergic transmission, presumably through the DNA methylation-dependent transcriptional control over endocytosis-related genes. The relevance of our findings is supported by human brain sample analysis, pointing to a potential implication of DNA methylation-dependent endocytosis regulation in the pathophysiology of temporal lobe epilepsy, a disease characterized by disturbed synaptic transmission.


Assuntos
Metilação de DNA/genética , Endocitose/genética , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Inibição Neural/genética , Sinapses/metabolismo , Animais , Clatrina , Proteínas do Citoesqueleto/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Epigenoma , Epilepsia do Lobo Temporal/genética , Humanos , Potenciais Pós-Sinápticos Inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Sinápticas/metabolismo , Transcriptoma
9.
J Neurosci ; 39(17): 3175-3187, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30792272

RESUMO

Transient brain insults, including status epilepticus (SE), can trigger a period of epileptogenesis during which functional and structural reorganization of neuronal networks occurs resulting in the onset of focal epileptic seizures. In recent years, mechanisms that regulate the dynamic transcription of individual genes during epileptogenesis and thereby contribute to the development of a hyperexcitable neuronal network have been elucidated. Our own results have shown early growth response 1 (Egr1) to transiently increase expression of the T-type voltage-dependent Ca2+ channel (VDCC) subunit CaV3.2, a key proepileptogenic protein. However, epileptogenesis involves complex and dynamic transcriptomic alterations; and so far, our understanding of the transcriptional control mechanism of gene regulatory networks that act in the same processes is limited. Here, we have analyzed whether Egr1 acts as a key transcriptional regulator for genes contributing to the development of hyperexcitability during epileptogenesis. We found Egr1 to drive the expression of the VDCC subunit α2δ4, which was augmented early and persistently after pilocarpine-induced SE. Furthermore, we show that increasing levels of α2δ4 in the CA1 region of the hippocampus elevate seizure susceptibility of mice by slightly decreasing local network activity. Interestingly, we also detected increased expression levels of Egr1 and α2δ4 in human hippocampal biopsies obtained from epilepsy surgery. In conclusion, Egr1 controls the abundance of the VDCC subunits CaV3.2 and α2δ4, which act synergistically in epileptogenesis, and thereby contributes to a seizure-induced "transcriptional Ca2+ channelopathy."SIGNIFICANCE STATEMENT The onset of focal recurrent seizures often occurs after an epileptogenic process induced by transient insults to the brain. Recently, transcriptional control mechanisms for individual genes involved in converting neurons hyperexcitable have been identified, including early growth response 1 (Egr1), which activates transcription of the T-type Ca2+ channel subunit CaV3.2. Here, we find Egr1 to regulate also the expression of the voltage-dependent Ca2+ channel subunit α2δ4, which was augmented after pilocarpine- and kainic acid-induced status epilepticus. In addition, we observed that α2δ4 affected spontaneous network activity and the susceptibility for seizure induction. Furthermore, we detected corresponding dynamics in human biopsies from epilepsy patients. In conclusion, Egr1 orchestrates a seizure-induced "transcriptional Ca2+ channelopathy" consisting of CaV3.2 and α2δ4, which act synergistically in epileptogenesis.


Assuntos
Canais de Cálcio/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Convulsões/metabolismo , Estado Epiléptico/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Ácido Caínico , Masculino , Camundongos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Pilocarpina , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
10.
Mol Neurobiol ; 56(3): 1825-1840, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29934763

RESUMO

Temporal lobe epilepsy (TLE) represents a devastating neurological condition, in which approximately 4/5 of patients remain refractory for anti-convulsive drugs. Epilepsy surgery biopsies often reveal the damage pattern of "hippocampal sclerosis" (HS) characterized not only by neuronal loss but also pronounced astrogliosis and inflammatory changes. Since TLE shares distinct pathogenetic aspects with multiple sclerosis (MS), we have here scrutinized therapeutic effects in experimental TLE of the immunmodulator fingolimod, which is established in MS therapy. Fingolimod targets sphingosine-phosphate receptors (S1PRs). mRNAs of fingolimod target S1PRs were augmented in two experimental post status epilepticus (SE) TLE mouse models (suprahippocampal kainate/pilocarpine). SE frequently induces chronic recurrent seizures after an extended latency referred to as epileptogenesis. Transient fingolimod treatment of mice during epileptogenesis after suprahippocampal kainate-induced SE revealed substantial reduction of chronic seizure activity despite lacking acute attenuation of SE itself. Intriguingly, fingolimod exerted robust anti-convulsive activity in kainate-induced SE mice treated in the chronic TLE stage and had neuroprotective and anti-gliotic effects and reduced cytotoxic T cell infiltrates. Finally, the expression profile of fingolimod target-S1PRs in human hippocampal biopsy tissue of pharmacoresistant TLE patients undergoing epilepsy surgery for seizure relief suggests repurposing of fingolimod as novel therapeutic perspective in focal epilepsies.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Cloridrato de Fingolimode/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Ácido Caínico , Masculino , Camundongos , Pilocarpina , Convulsões/induzido quimicamente
11.
Mol Neurobiol ; 55(5): 4463-4472, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28669125

RESUMO

Insights into the dynamic changes in molecular processes occurring in the brain during epileptogenesis can substantially improve our understanding of their pathogenetic relevance. In this context, neuroinflammation is a potential mechanism of epileptogenesis which has recently been investigated in animal models by MRI or PET molecular imaging. Here, we developed an alternative and complementary molecular imaging strategy by designing a serotype 8 recombinant adeno-associated virus (AAV8) harboring promoter fragments of the GFAP or IL-1ß promoter and a luciferase reporter gene. Mice were injected intrahippocampally with rAAV8 and treated with intracortical kainic acid to induce status epilepticus (SE) and hence epileptogenesis. In vivo bioluminescence imaging combined with immunohistochemistry revealed a significant activation of the GFAP promoter 24 h and 3 days after kainate-induced SE. For IL-1ß, we identified the promoter region required for studying cell-specific induction of the promoter in longitudinal studies. We conclude that the GFAP promoter fragment represents a useful tool for monitoring the in vivo activation of astrocytes with an inflammatory phenotype during epileptogenesis, or under other pathophysiological conditions.


Assuntos
Astrócitos/patologia , Imageamento Tridimensional , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/patologia , Animais , Astrócitos/metabolismo , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Humanos , Interleucina-1beta/genética , Ácido Caínico , Luciferases/metabolismo , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , Estado Epiléptico/genética
12.
Nat Commun ; 6: 8688, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26498180

RESUMO

Temporal lobe epilepsy (TLE) is the most common focal seizure disorder in adults. In many patients, transient brain insults, including status epilepticus (SE), are followed by a latent period of epileptogenesis, preceding the emergence of clinical seizures. In experimental animals, transcriptional upregulation of CaV3.2 T-type Ca(2+)-channels, resulting in an increased propensity for burst discharges of hippocampal neurons, is an important trigger for epileptogenesis. Here we provide evidence that the metal-regulatory transcription factor 1 (MTF1) mediates the increase of CaV3.2 mRNA and intrinsic excitability consequent to a rise in intracellular Zn(2+) that is associated with SE. Adeno-associated viral (rAAV) transfer of MTF1 into murine hippocampi leads to increased CaV3.2 mRNA. Conversely, rAAV-mediated expression of a dominant-negative MTF1 abolishes SE-induced CaV3.2 mRNA upregulation and attenuates epileptogenesis. Finally, data from resected human hippocampi surgically treated for pharmacoresistant TLE support the Zn(2+)-MTF1-CaV3.2 cascade, thus providing new vistas for preventing and treating TLE.


Assuntos
Canais de Cálcio Tipo T/genética , Proteínas de Ligação a DNA/metabolismo , Epilepsia do Lobo Temporal/genética , Estado Epiléptico/genética , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Animais , Canais de Cálcio Tipo T/metabolismo , Proteínas de Ligação a DNA/genética , Epilepsia do Lobo Temporal/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Estado Epiléptico/metabolismo , Fatores de Transcrição/genética , Fator MTF-1 de Transcrição
13.
Brain Struct Funct ; 220(5): 3067-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24889163

RESUMO

Focal epilepsies often originate in the hippocampal formation of the temporal lobe (temporal lobe epilepsy) and are generally acquired after transient brain insults. Such insults induce cellular and structural reorganization processes of the hippocampus, referred to as epileptogenesis that finally convert the brain spontaneous epileptic. Here, we developed a new molecular imaging strategy in a state-of-the-art animal model to provide insights into key epileptogenic mechanisms. Our new approach combines recombinant adeno-associated virus (rAAV) gene delivery with in vivo bioluminescence imaging. rAAV particles harboring the luciferase reporter gene under control of the minimal T type Ca(2+)-channel subunit Ca V 3.2-promoter were generated and injected stereotaxically in the hippocampal region of mice. Bioluminescent signals, corresponding to Ca V 3.2 promoter activation, were imaged in vivo in the pilocarpine model of status epilepticus (SE). We detected activation of key Ca V 3.2 promoter motifs at 3 and 10 days after SE but not after the onset of chronic seizures. These data suggest Ca V 3.2 promoter activation as novel anti-epileptogenic target. In more general terms, we have established an experimental approach that allows to follow cerebral gene promoter dynamics longitudinally and to correlate this activity to behavioral parameters in the same mice.


Assuntos
Canais de Cálcio/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Imagem Molecular , Pilocarpina/farmacologia , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/patologia , Camundongos , Convulsões/fisiopatologia , Estado Epiléptico/metabolismo , Lobo Temporal/metabolismo , Lobo Temporal/patologia
14.
Brain Res ; 1499: 136-44, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23333373

RESUMO

Many brain disorders, including epilepsy, migraine and depression, manifest with episodic symptoms that may last for various time intervals. Transient alterations of neuronal function such as related to serotonin homeostasis generally underlie this phenomenon. Several nucleotide polymorphisms (SNPs) in gene promoters associated with these diseases have been described. For obvious reasons, their regulatory roles on gene expression particularly in human brain tissue remain largely enigmatic. The rs6295 G-/C-allelic variant is located in the promoter region of the human HTR1a gene, encoding the G-protein-coupled receptor for 5-hydroxytryptamine (5HT1AR). In addition to reported transcriptional repressor binding, our bioinformatic analyses predicted a reduced binding affinity of the transcription factor (TF) c-Jun for the G-allele. In vitro luciferase transfection assays revealed c-Jun to (a) activate the rs6295 C- significantly stronger than the G-allelic variant and (b) antagonize efficiently the repressive effect of Hes5 on the promoter. The G-allele of rs6295 is known to be associated with aspects of major depression and migraine. In order to address a potential role of rs6295 variants in human brain tissue, we have isolated DNA and mRNA from fresh frozen hippocampal tissue of pharmacoresistant temporal lobe epilepsy (TLE) patients (n=140) after epilepsy surgery for seizure control. We carried out SNP genotyping studies and mRNA analyses in order to determine HTR1a mRNA expression in human hippocampal samples stratified according to the rs6295 allelic variant. The mRNA expression of HTR1a was significantly more abundant in hippocampal mRNA of TLE patients homozygous for the rs6295 C-allele as compared to those with the GG-genotype. These data may point to a novel, i.e., rs6295 allelic variant and c-Jun dependent transcriptional 5HT1AR 'receptoropathy'.


Assuntos
Epilepsia/genética , Hipocampo/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Regiões Promotoras Genéticas , Receptor 5-HT1A de Serotonina/genética , Transcrição Gênica , Sequência de Bases , Biologia Computacional , Epilepsia/metabolismo , Genótipo , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
15.
J Biol Chem ; 287(19): 15489-501, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22431737

RESUMO

The pore-forming Ca(2+) channel subunit Ca(V)3.2 mediates a low voltage-activated (T-type) Ca(2+) current (I(CaT)) that contributes pivotally to neuronal and cardiac pacemaker activity. Despite the importance of tightly regulated Ca(V)3.2 levels, the mechanisms regulating its transcriptional dynamics are not well understood. Here, we have identified two key factors that up- and down-regulate the expression of the gene encoding Ca(V)3.2 (Cacna1h). First, we determined the promoter region and observed several stimulatory and inhibitory clusters. Furthermore, we found binding sites for the transcription factor early growth response 1 (Egr1/Zif268/Krox-24) to be highly overrepresented within the Ca(V)3.2 promoter region. mRNA expression analyses and dual-luciferase promoter assays revealed that the Ca(V)3.2 promoter was strongly activated by Egr1 overexpression in vitro and in vivo. Subsequent chromatin immunoprecipitation assays in NG108-15 cells and mouse hippocampi confirmed specific Egr1 binding to the Ca(V)3.2 promoter. Congruently, whole-cell I(CaT) values were significantly larger after Egr1 overexpression. Intriguingly, Egr1-induced activation of the Ca(V)3.2 promoter was effectively counteracted by the repressor element 1-silencing transcription factor (REST). Thus, Egr1 and REST can bi-directionally regulate Ca(V)3.2 promoter activity and mRNA expression and, hence, the size of I(CaT). This mechanism has critical implications for the regulation of neuronal and cardiac Ca(2+) homeostasis under physiological conditions and in episodic disorders such as arrhythmias and epilepsy.


Assuntos
Canais de Cálcio Tipo T/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Encéfalo/metabolismo , Canais de Cálcio Tipo T/fisiologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteína 1 de Resposta de Crescimento Precoce/genética , Células HEK293 , Humanos , Potenciais da Membrana , Camundongos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Ligação Proteica , Ratos , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Transfecção
16.
J Neuropathol Exp Neurol ; 70(12): 1080-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22082659

RESUMO

The functional consequences of single nucleotide polymorphisms associated with episodic brain disorders such as epilepsy and depression are unclear. Allelic associations with generalized epilepsies have been reported for single nucleotide polymorphisms rs1883415 (ALDH5A1; succinic semialdehyde dehydrogenase) and rs4906902 (GABRB3; GABAA ß3), both of which are present in the 5' regulatory region of genes involved in γ-aminobutyric acid (GABA) homeostasis. To address their allelic association with episodic brain disorders and allele-specific impact on the transcriptional regulation of these genes in human brain tissue, DNA and messenger RNA (mRNA) isolated from hippocampi were obtained at epilepsy surgery of 146 pharmacoresistant mesial temporal lobe epilepsy (mTLE) patients and from 651 healthy controls. We found that the C allele of rs1883415 is accumulated to a greater extentin mTLE versus controls. By real-time quantitative reverse transcription-polymerase chain reaction analyses, individuals homozygous for the C allele showed higher ALDH5A1 mRNA expression. The rs4906902 G allele of the GABRB3 gene was overrepresented in mTLE patients with depression; individuals homozygous for the G allele showed reduced GABRB3 mRNA expression. Bioinformatic analyses suggest that rs1883415 and rs4906902 alter the DNA binding affinity of the transcription factors Egr-3 in ALDH5A1 and MEF-2 in GABRB3 promoters, respectively. Using in vitro luciferase transfection assays, we observed that, in both cases, the transcription factors regulate gene expression depending on the allelic variant in the same direction as in the human hippocampi. Our data suggest that distinct promoter variants may sensitize individuals for differential, potentially stimulus-induced alterations of GABA homeostasis-relevant gene expression. This might contribute to the episodic onset of symptoms and point to new targets for pharmacotherapies.


Assuntos
Epilepsia do Lobo Temporal/genética , Hipocampo/fisiopatologia , Regiões Promotoras Genéticas , Receptores de GABA/genética , Succinato-Semialdeído Desidrogenase/genética , Ácido gama-Aminobutírico/genética , Alelos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Genótipo , Hipocampo/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único , Receptores de GABA/metabolismo , Succinato-Semialdeído Desidrogenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
17.
Psychiatr Genet ; 21(3): 125-31, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21317683

RESUMO

OBJECTIVE: An interaction between predisposing genes and environmental stressors is thought to underlie the neurodevelopmental disorder schizophrenia. In a targeted gene screening, we previously found that the minor allele of the single nucleotide polymorphism (SNP) rs6336 in the neurotrophic tyrosine kinase receptor 1 (NTRK1/TRKA) gene is associated with schizophrenia as a risk factor. METHODS: We genotyped the TRKA SNP in a total of eight independent Caucasian schizophrenia case-control groups. RESULT: Remarkably, although in five of the groups a higher frequency of the risk allele was indeed found in the patients compared with the controls, in the three other groups the SNP acted as a protective factor. CONCLUSION: An intriguing possibility is that this dual character of the TRKA SNP is caused by its interaction with endophenotypic and/or epistatic factors.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptor trkA/genética , Esquizofrenia/genética , Adulto , Sequência de Bases , Estudos de Casos e Controles , Primers do DNA , Europa (Continente) , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Estados Unidos
18.
J Psychiatr Res ; 43(15): 1195-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19435634

RESUMO

Schizophrenia is a complex neurodevelopmental disorder that is thought to be induced by an interaction between predisposing genes and environmental stressors. To identify predisposing genetic factors, we performed a targeted (mostly neurodevelopmental) gene approach involving the screening of 396 selected non-synonymous single-nucleotide polymorphisms (SNPs) in three independent Caucasian schizophrenia case-control cohorts (USA, Denmark and Norway). A meta-analysis revealed ten non-synonymous SNPs that were nominally associated with schizophrenia, nine of which have not been previously linked to the disorder. Risk alleles are in TRKA (rs6336), BARD1 (rs28997576), LAMA5 (rs3810548), DKK2 (rs7037102), NOD2 (rs2066844) and RELN (rs2229860), whereas protective alleles are in NOD2 (rs2066845), NRG1 (rs10503929), ADAM7 (rs13259668) and TNR (rs859427). Following correction for multiple testing, the most attractive candidate for further study concerns SNP rs6336 (q=0.12) that causes the substitution of an evolutionarily highly conserved amino acid residue in the kinase domain of the neurodevelopmentally important receptor TRKA. Thus, TRKA signaling may represent a novel susceptibility pathway for schizophrenia.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Receptor trkA/genética , Esquizofrenia/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Estudos de Coortes , Dinamarca , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Reelina , Estados Unidos , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA