Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Orig Life Evol Biosph ; 50(3-4): 157-173, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32617792

RESUMO

Extraterrestrial environments influence the biochemistry of organisms through a variety of factors, including high levels of radiation and vacuum, temperature extremes and a lack of water and nutrients. A wide variety of terrestrial microorganisms, including those counted amongst the most ancient inhabitants of Earth, can cope with high levels of salinity, extreme temperatures, desiccation and high levels of radiation. Key among these are the haloarchaea, considered particularly relevant for astrobiological studies due to their ability to thrive in hypersaline environments. In this study, a novel haloarchaea isolated from Urmia Salt Lake, Iran, Halovarius luteus strain DA50T, was exposed to varying levels of simulated extraterrestrial conditions and compared to that of the bacteria Bacillus atrophaeus. Bacillus atrophaeus was selected for comparison due to its well-described resistance to extreme conditions and its ability to produce strong spore structures. Thin films were produced to investigate viability without the protective influence of cell multi-layers. Late exponential phase cultures of Hvr. luteus and B. atrophaeus were placed in brine and phosphate buffered saline media, respectively. The solutions were allowed to evaporate and cells were encapsulated and exposed to radiation, desiccation and vacuum conditions, and their post-exposure viability was studied by the Most Probable Number method. The protein profile using High Performance Liquid Chromatography and Matrix Assisted Laser Desorption/Ionization bench top reflector time-of-flight are explored after vacuum and UV-radiation exposure. Results showed that the change in viability of the spore-forming bacteria B. atrophaeus was only minor whereas Hvr. luteus demonstrated a range of viability under different conditions. At the peak radiation flux of 105 J/m2 under nitrogen flow and after two weeks of desiccation, Hvr. luteus demonstrated the greatest decrease in viability. This study further expands our understanding of the boundary conditions of astrobiologically relevant organisms in the harsh space environment.


Assuntos
Bacillus/fisiologia , Dessecação , Meio Ambiente Extraterreno , Halobacteriaceae/fisiologia , Raios Ultravioleta/efeitos adversos , Vácuo , Bacillus/efeitos da radiação , Halobacteriaceae/efeitos da radiação , Marte
2.
Int J Mol Sci ; 20(3)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30743987

RESUMO

The possibility of humans to live outside of Earth on another planet has attracted the attention of numerous scientists around the world. One of the greatest difficulties is that humans cannot live in an extra-Earth environment without proper equipment. In addition, the consequences of chronic gravity alterations in human body are not known. Here, we used planarians as a model system to test how gravity fluctuations could affect complex organisms. Planarians are an ideal system, since they can regenerate any missing part and they are continuously renewing their tissues. We performed a transcriptomic analysis of animals submitted to simulated microgravity (Random Positioning Machine, RPM) (s-µg) and hypergravity (8 g), and we observed that the transcriptional levels of several genes are affected. Surprisingly, we found the major differences in the s-µg group. The results obtained in the transcriptomic analysis were validated, demonstrating that our transcriptomic data is reliable. We also found that, in a sensitive environment, as under Hippo signaling silencing, gravity fluctuations potentiate the increase in cell proliferation. Our data revealed that changes in gravity severely affect genetic transcription and that these alterations potentiate molecular disorders that could promote the development of multiple diseases such as cancer.


Assuntos
Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica , Planárias/fisiologia , Transcriptoma , Ausência de Peso , Animais , Proliferação de Células , Biologia Computacional/métodos , Regulação da Expressão Gênica , Inativação Gênica , Hibridização In Situ , Interferência de RNA , Reprodutibilidade dos Testes , Simulação de Ausência de Peso
3.
Stem Cells Dev ; 27(12): 858-869, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29649412

RESUMO

Gravity influences physical and biological processes, especially during development and homeostasis of several tissues in the human body. Studies under altered gravity have been receiving great attention toward a better understanding of microgravity-, hypogravity (<1 g)-, or hypergravity (>1 g)-induced alterations. In this work, the influence of simulated hypergravity over human tendon-derived cells (hTDCs) was studied at 5, 10, 15, and 20 g for 4 or 16 h, using a large diameter centrifuge. Main results showed that 16 h of simulated hypergravity limited cell proliferation. Cell area was higher in hTDCs cultured at 5, 10, and 15 g for 16 h, in comparison to 1 g control. Actin filaments were more pronounced in hTDCs cultured at 5 and 10 g for 16 h. Focal adhesion kinase (FAK) was mainly expressed in focal adhesion sites upon hypergravity stimulation, in comparison to perinuclear localization in control cells after 16 h; and FAK number/cell increased with increasing g-levels. A tendency toward an upregulation of tenogenic markers was observed; scleraxis (SCX), tenascin C (TNC), collagen type III (COL3A1), and decorin (DCN) were significantly upregulated in hTDCs cultured at 15 g and COL3A1 and DCN were significantly upregulated in hTDCs cultured at 20 g. Overall, simulated hypergravity affected the behavior of hTDCs, with more pronounced effects in the long-term period (16 h) of stimulation.


Assuntos
Antígenos de Diferenciação/biossíntese , Proliferação de Células , Regulação da Expressão Gênica , Hipergravidade , Tendões/metabolismo , Adulto , Humanos , Masculino , Tendões/patologia , Fatores de Tempo
4.
J R Soc Interface ; 13(124)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28334696

RESUMO

Angiogenesis, the formation of blood vessels from pre-existing ones, is a key event in pathology, including cancer progression, but also in homeostasis and regeneration. As the phenotype of endothelial cells (ECs) is continuously regulated by local biomechanical forces, studying endothelial behaviour in altered gravity might contribute to new insights towards angiogenesis modulation. This study aimed at characterizing EC behaviour after hypergravity exposure (more than 1g), with special focus on cytoskeleton architecture and capillary-like structure formation. Herein, human umbilical vein ECs (HUVECs) were cultured under two-dimensional and three-dimensional conditions at 3g and 10g for 4 and 16 h inside the large diameter centrifuge at the European Space Research and Technology Centre (ESTEC) of the European Space Agency. Although no significant tendency regarding cytoskeleton organization was observed for cells exposed to high g's, a slight loss of the perinuclear localization of ß-tubulin was observed for cells exposed to 3g with less pronounced peripheral bodies of actin when compared with 1g control cells. Additionally, hypergravity exposure decreased the assembly of HUVECs into capillary-like structures, with a 10g level significantly reducing their organization capacity. In conclusion, short-term hypergravity seems to affect EC phenotype and their angiogenic potential in a time and g-level-dependent manner.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipergravidade , Neovascularização Fisiológica , Actinas/metabolismo , Humanos , Tubulina (Proteína)/metabolismo
5.
J Oral Maxillofac Surg ; 73(12): 2367-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26428613

RESUMO

PURPOSE: When establishing intermaxillary fixation (IMF) using bone screws, fracture of a screw is a potential complication. This study was conducted to investigate the forces that arise at bone screw insertion and to determine safety margins between torque for manually tightened insertion and torque until breakage for 3 different IMF screw systems, which could ultimately favor the use of 1 IMF screw system based on decreased risk of complications. MATERIALS AND METHODS: IMF screws were placed into porcine mandibles by 3 oral and maxillofacial surgeons. The porcine mandibles were evaluated for cortical thickness and suitable insertion sites by cone-beam computed tomography. Measurements of torque until failure were performed on predrilled aluminum plates by the primary author. A digital torque screwdriver measured 180 data points per second as continuous data and recorded the measurements. RESULTS: Measurements indicated clear differences in torsion forces between manually tightened insertions and torque until breakage for all 3 IMF screw systems. No statistical difference in safety margins was found among the IMF screw systems. CONCLUSIONS: Because no statistical differences in safety margins were found among the IMF screw systems, this study indicates that IMF screw selection should be based on other clinical factors, such as ease of use or economic factors. Future prospective studies are necessary to fully determine evidence-based criteria for IMF screw selection.


Assuntos
Parafusos Ósseos , Fixação Interna de Fraturas/instrumentação , Maxila/cirurgia , Animais , Tomografia Computadorizada de Feixe Cônico , Fixação Interna de Fraturas/métodos , Maxila/diagnóstico por imagem , Fraturas Maxilares/cirurgia , Procedimentos Cirúrgicos Bucais/instrumentação , Procedimentos Cirúrgicos Bucais/métodos , Suínos , Torque
6.
Tissue Eng Part A ; 19(1-2): 114-24, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22871341

RESUMO

Mimicking the structural nanomolecular extracellular matrix with synthetically designed nanosized materials is a relatively new approach, which can be applied in the field of bone tissue engineering. Likewise, bone tissue-engineered constructs can be aided in their development by the use of several types of mechanical stimuli. In this study, we wanted to combine nanotextured biomaterials and centrifugation in one multifactorial system. Mesenchymal stem cells were isolated from rat bone marrow, and cultured on a nanogrooved polystyrene substrate (200-nm-wide pitch with a depth of 50 nm). Constant centrifugation of 10 g was applied to cells up to 7 days. Results showed that on a nanogrooved substrate osteoblast-like cells align parallel to the groove direction. Centrifugation of 10 g also affected cell morphology on a smooth surface. Moreover, cell alignment was significantly reduced for cells grown on nanogrooved substrates, which were subsequently subjected to centrifugation. Independently, both stimuli increased the number of cells after 7 days of culture. However, when both stimuli were combined, an additive effect on cell number was observed, followed by an enhanced effect on osteocalcin mRNA expression and matrix mineralization. In conclusion, biomaterial surface modification as well as centrifugation are effective means to enhance bone cell behavior, moreover, readily available to many tissue engineers.


Assuntos
Centrifugação/métodos , Hipergravidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Nanoestruturas/química , Osteoblastos/citologia , Osteoblastos/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Masculino , Mecanotransdução Celular/fisiologia , Nanoestruturas/ultraestrutura , Osteogênese/fisiologia , Ratos , Ratos Wistar , Propriedades de Superfície
7.
Ann Biomed Eng ; 33(1): 104-10, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15709711

RESUMO

The shear stress induced by the loading-mediated flow of interstitial fluid through the lacuno-canalicular network is a likely stimulus for bone cell adaptive responses. Furthermore, the magnitude of the cellular response is related to the rate of mechanical loading rather than its magnitude. Thus, bone cells might be very sensitive to sudden stress-kicks, as occuring e.g., during impact loading. There is evidence that cells change stiffness under stress, which might make them more sensitive to subsequent loading. We studied the influence of a stress-kick on the mechanosensitivity of MC3T3-E1 osteoblast-like cells under different peak shear rate conditions, as measured by nitric oxide production. MC3T3-E1 bone cells were treated with steady or pulsating fluid shear stress (PFSS) for 5 min with different peak rates (9.70, 17.5, and 22.0 Pa Hz) using varying frequencies (5 and 9 Hz), and amplitudes (0.70 and 0.31 Pa). PFSS treatment was done with or without fluid flow pretreatment phase, which removed the initial stress-kick by first applying a slow fluid flow increase. Nitric oxide production in response to fluid shear stress was rate dependent, but necessitated an initial stress-kick to occur. This suggests that high-rate stimuli condition bone cells to be more sensitive for high-frequency, low-amplitude loads.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Mecanotransdução Celular/fisiologia , Óxido Nítrico/biossíntese , Osteoblastos/fisiologia , Linhagem Celular , Humanos , Estresse Fisiológico , Vibração
8.
Am J Physiol Cell Physiol ; 288(6): C1211-21, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15689415

RESUMO

Exposure to microgravity causes bone loss in humans, and the underlying mechanism is thought to be at least partially due to a decrease in bone formation by osteoblasts. In the present study, we examined the hypothesis that microgravity changes osteoblast gene expression profiles, resulting in bone loss. For this study, we developed an in vitro system that simulates microgravity using the Random Positioning Machine (RPM) to study the effects of microgravity on 2T3 preosteoblast cells grown in gas-permeable culture disks. Exposure of 2T3 cells to simulated microgravity using the RPM for up to 9 days significantly inhibited alkaline phosphatase activity, recapitulating a bone loss response that occurs in real microgravity conditions without altering cell proliferation and shape. Next, we performed DNA microarray analysis to determine the gene expression profile of 2T3 cells exposed to 3 days of simulated microgravity. Among 10,000 genes examined using the microarray, 88 were downregulated and 52 were upregulated significantly more than twofold using simulated microgravity compared with the static 1-g condition. We then verified the microarray data for some of the genes relevant in bone biology using real-time PCR assays and immunoblotting. We confirmed that microgravity downregulated levels of alkaline phosphatase, runt-related transcription factor 2, osteomodulin, and parathyroid hormone receptor 1 mRNA; upregulated cathepsin K mRNA; and did not significantly affect bone morphogenic protein 4 and cystatin C protein levels. The identification of gravisensitive genes provides useful insight that may lead to further hypotheses regarding their roles in not only microgravity-induced bone loss but also the general patient population with similar pathological conditions, such as osteoporosis.


Assuntos
Diferenciação Celular/fisiologia , Expressão Gênica/fisiologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Simulação de Ausência de Peso , Animais , Regulação para Baixo , Perfilação da Expressão Gênica , Técnicas In Vitro , Camundongos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA