Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7524, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473839

RESUMO

CHD4 is an essential, widely conserved ATP-dependent translocase that is also a broad tumour dependency. In common with other SF2-family chromatin remodelling enzymes, it alters chromatin accessibility by repositioning histone octamers. Besides the helicase and adjacent tandem chromodomains and PHD domains, CHD4 features 1000 residues of N- and C-terminal sequence with unknown structure and function. We demonstrate that these regions regulate CHD4 activity through different mechanisms. An N-terminal intrinsically disordered region (IDR) promotes remodelling integrity in a manner that depends on the composition but not sequence of the IDR. The C-terminal region harbours an auto-inhibitory region that contacts the helicase domain. Auto-inhibition is relieved by a previously unrecognized C-terminal SANT-SLIDE domain split by ~150 residues of disordered sequence, most likely by binding of this domain to substrate DNA. Our data shed light on CHD4 regulation and reveal strong mechanistic commonality between CHD family members, as well as with ISWI-family remodellers.


Assuntos
Translocases Mitocondriais de ADP e ATP
2.
Front Mol Biosci ; 9: 968424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213113

RESUMO

Faithful DNA replication is essential for all life. A multi-protein complex called the replisome contains all the enzymatic activities required to facilitate DNA replication, including unwinding parental DNA and synthesizing two identical daughter molecules. Faithful DNA replication can be challenged by both intrinsic and extrinsic factors, which can result in roadblocks to replication, causing incomplete replication, genomic instability, and an increased mutational load. This increased mutational load can ultimately lead to a number of diseases, a notable example being cancer. A key example of a roadblock to replication is chemical modifications in the DNA caused by exposure to ultraviolet light. Protein dynamics are thought to play a crucial role to the molecular pathways that occur in the presence of such DNA lesions, including potential damage bypass. Therefore, many assays have been developed to study these dynamics. In this review, we discuss three methods that can be used to study protein dynamics during replisome-lesion encounters in replication reactions reconstituted from purified proteins. Specifically, we focus on ensemble biochemical assays, single-molecule fluorescence, and cryo-electron microscopy. We discuss two key model DNA replication systems, derived from Escherichia coli and Saccharomyces cerevisiae. The main methods of choice to study replication over the last decades have involved biochemical assays that rely on ensemble averaging. While these assays do not provide a direct readout of protein dynamics, they can often be inferred. More recently, single-molecule techniques including single-molecule fluorescence microscopy have been used to visualize replisomes encountering lesions in real time. In these experiments, individual proteins can be fluorescently labeled in order to observe the dynamics of specific proteins during DNA replication. Finally, cryo-electron microscopy can provide detailed structures of individual replisome components, which allows functional data to be interpreted in a structural context. While classic cryo-electron microscopy approaches provide static information, recent developments such as time-resolved cryo-electron microscopy help to bridge the gap between static structures and dynamic single-molecule techniques by visualizing sequential steps in biochemical pathways. In combination, these techniques will be capable of visualizing DNA replication and lesion encounter dynamics in real time, whilst observing the structural changes that facilitate these dynamics.

3.
Viruses ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215863

RESUMO

Chikungunya virus (CHIKV) presents a major burden on healthcare systems worldwide, but specific treatment remains unavailable. Attachment and fusion of CHIKV to the host cell membrane is mediated by the E1/E2 protein spikes. We used an in vitro single-particle fusion assay to study the effect of the potent, neutralizing antibody CHK-152 on CHIKV binding and fusion. We find that CHK-152 shields the virions, inhibiting interaction with the target membrane and inhibiting fusion. The analysis of the ratio of bound antibodies to epitopes implied that CHIKV fusion is a highly cooperative process. Further, dissociation of the antibody at lower pH results in a finely balanced kinetic competition between inhibition and fusion, suggesting a window of opportunity for the spike proteins to act and mediate fusion, even in the presence of the antibody.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus Chikungunya/imunologia , Vírus Chikungunya/fisiologia , Internalização do Vírus , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linhagem Celular , Concentração de Íons de Hidrogênio , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Vírion/fisiologia , Ligação Viral
4.
Nat Commun ; 11(1): 1478, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198374

RESUMO

The Escherichia coli transcription-repair coupling factor Mfd displaces stalled RNA polymerase and delivers the stall site to the nucleotide excision repair factors UvrAB for damage detection. Whether this handoff from RNA polymerase to UvrA occurs via the Mfd-UvrA2-UvrB complex or alternate reaction intermediates in cells remains unclear. Here, we visualise Mfd in actively growing cells and determine the catalytic requirements for faithful recruitment of nucleotide excision repair proteins. We find that ATP hydrolysis by UvrA governs formation and disassembly of the Mfd-UvrA2 complex. Further, Mfd-UvrA2-UvrB complexes formed by UvrB mutants deficient in DNA loading and damage recognition are impaired in successful handoff. Our single-molecule dissection of interactions of Mfd with its partner proteins inside live cells shows that the dissociation of Mfd is tightly coupled to successful loading of UvrB, providing a mechanism via which loading of UvrB occurs in a strand-specific manner.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Imagem Individual de Molécula/métodos , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases , Proteínas de Bactérias , ATPases Bacterianas Próton-Translocadoras , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Conformação Proteica , Dedos de Zinco/genética , Dedos de Zinco/fisiologia
5.
Nat Commun ; 11(1): 1477, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198385

RESUMO

In the model organism Escherichia coli, helix distorting lesions are recognized by the UvrAB damage surveillance complex in the global genomic nucleotide excision repair pathway (GGR). Alternately, during transcription-coupled repair (TCR), UvrA is recruited to Mfd at sites of RNA polymerases stalled by lesions. Ultimately, damage recognition is mediated by UvrA, followed by verification by UvrB. Here we characterize the differences in the kinetics of interactions of UvrA with Mfd and UvrB by following functional, fluorescently tagged UvrA molecules in live TCR-deficient or wild-type cells. The lifetimes of UvrA in Mfd-dependent or Mfd-independent interactions in the absence of exogenous DNA damage are comparable in live cells, and are governed by UvrB. Upon UV irradiation, the lifetimes of UvrA strongly depended on, and matched those of Mfd. Overall, we illustrate a non-perturbative, imaging-based approach to quantify the kinetic signatures of damage recognition enzymes participating in multiple pathways in cells.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Imagem Óptica/métodos , Células Procarióticas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Biofísica , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA , DNA Bacteriano/efeitos da radiação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Fatores de Transcrição/metabolismo , Raios Ultravioleta
6.
Nucleic Acids Res ; 48(1): 212-230, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31665437

RESUMO

When replication forks encounter template DNA lesions, the lesion is simply skipped in some cases. The resulting lesion-containing gap must be converted to duplex DNA to permit repair. Some gap filling occurs via template switching, a process that generates recombination-like branched DNA intermediates. The Escherichia coli Uup and RadD proteins function in different pathways to process the branched intermediates. Uup is a UvrA-like ABC family ATPase. RadD is a RecQ-like SF2 family ATPase. Loss of both functions uncovers frequent and RecA-independent deletion events in a plasmid-based assay. Elevated levels of crossing over and repeat expansions accompany these deletion events, indicating that many, if not most, of these events are associated with template switching in postreplication gaps as opposed to simple replication slippage. The deletion data underpin simulations indicating that multiple postreplication gaps may be generated per replication cycle. Both Uup and RadD bind to branched DNAs in vitro. RadD protein suppresses crossovers and Uup prevents nucleoid mis-segregation. Loss of Uup and RadD function increases sensitivity to ciprofloxacin. We present Uup and RadD as genomic guardians. These proteins govern two pathways for resolution of branched DNA intermediates such that potentially deleterious genome rearrangements arising from frequent template switching are averted.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Replicação do DNA , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transportadores de Cassetes de Ligação de ATP/deficiência , Adenosina Trifosfatases/deficiência , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Genoma Bacteriano , Plasmídeos/química , Plasmídeos/metabolismo , Origem de Replicação , Deleção de Sequência
7.
J Mol Biol ; 430(22): 4525-4546, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29787765

RESUMO

The heat-shock proteins (Hsp) are a family of molecular chaperones, which collectively form a network that is critical for the maintenance of protein homeostasis. Traditional ensemble-based measurements have provided a wealth of knowledge on the function of individual Hsps and the Hsp network; however, such techniques are limited in their ability to resolve the heterogeneous, dynamic and transient interactions that molecular chaperones make with their client proteins. Single-molecule techniques have emerged as a powerful tool to study dynamic biological systems, as they enable rare and transient populations to be identified that would usually be masked in ensemble measurements. Thus, single-molecule techniques are particularly amenable for the study of Hsps and have begun to be used to reveal novel mechanistic details of their function. In this review, we discuss the current understanding of the chaperone action of Hsps and how gaps in the field can be addressed using single-molecule methods. Specifically, this review focuses on the ATP-independent small Hsps and the broader Hsp network and describes how these dynamic systems are amenable to single-molecule techniques.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Imagem Individual de Molécula/métodos , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Mapas de Interação de Proteínas
8.
Nat Commun ; 9(1): 1570, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679003

RESUMO

During transcription elongation, bacterial RNA polymerase (RNAP) can pause, backtrack or stall when transcribing template DNA. Stalled transcription elongation complexes at sites of bulky lesions can be rescued by the transcription terminator Mfd. The molecular mechanisms of Mfd recruitment to transcription complexes in vivo remain to be elucidated, however. Using single-molecule live-cell imaging, we show that Mfd associates with elongation transcription complexes even in the absence of exogenous genotoxic stresses. This interaction requires an intact RNA polymerase-interacting domain of Mfd. In the presence of drugs that stall RNAP, we find that Mfd associates pervasively with RNAP. The residence time of Mfd foci reduces from 30 to 18 s in the presence of endogenous UvrA, suggesting that UvrA promotes the resolution of Mfd-RNAP complexes on DNA. Our results reveal that RNAP is frequently rescued by Mfd during normal growth and highlight a ubiquitous house-keeping role for Mfd in regulating transcription elongation.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli K12/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Adenosina Trifosfatases/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
9.
J Control Release ; 278: 80-86, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29577949

RESUMO

Despite the longstanding existence of liposome technology in drug delivery applications, there have been no ligand-directed liposome formulations approved for clinical use to date. This lack of translation is due to several factors, one of which is the absence of molecular tools for the robust quantification of ligand density on the surface of liposomes. We report here for the first time the quantification of proteins attached to the surface of small unilamellar liposomes using single-molecule fluorescence imaging. Liposomes were surface-functionalized with fluorescently labeled human proteins previously validated to target the cancer cell surface biomarkers plasminogen activator inhibitor-2 (PAI-2) and trastuzumab (TZ, Herceptin®). These protein-conjugated liposomes were visualized using a custom-built wide-field fluorescence microscope with single-molecule sensitivity. By counting the photobleaching steps of the fluorescently labeled proteins, we calculated the number of attached proteins per liposome, which was 11 ±â€¯4 proteins for single-ligand liposomes. Imaging of dual-ligand liposomes revealed stoichiometries of the two attached proteins in accordance with the molar ratios of protein added during preparation. Preparation of PAI-2/TZ dual-ligand liposomes via two different methods revealed that the post-insertion method generated liposomes with a more equal representation of the two differently sized proteins, demonstrating the ability of this preparation method to enable better control of liposome protein densities. We conclude that the single-molecule imaging method presented here is an accurate and reliable quantification tool for determining ligand density and stoichiometry on the surface of liposomes. This method has the potential to allow for comprehensive characterization of novel ligand-directed liposomes that should facilitate the translation of these nanotherapies through to the clinic.


Assuntos
Sistemas de Liberação de Medicamentos , Microscopia de Fluorescência/métodos , Inibidor 2 de Ativador de Plasminogênio/administração & dosagem , Trastuzumab/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/química , Química Farmacêutica/métodos , Humanos , Ligantes , Lipossomos , Nanotecnologia/métodos , Inibidor 2 de Ativador de Plasminogênio/química , Reprodutibilidade dos Testes , Tecnologia Farmacêutica/métodos , Trastuzumab/química
10.
J Biol Chem ; 293(12): 4486-4497, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29382725

RESUMO

Proteostasis, or protein homeostasis, encompasses the maintenance of the conformational and functional integrity of the proteome and involves an integrated network of cellular pathways. Molecular chaperones, such as the small heat shock proteins (sHsps), are key elements of the proteostasis network that have crucial roles in inhibiting the aggregation of misfolded proteins. Failure of the proteostasis network can lead to the accumulation of misfolded proteins into intracellular and extracellular deposits. Deposits containing fibrillar forms of α-synuclein (α-syn) are characteristic of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. Here we show that the sHsp Hsp27 (HSPB1) binds to α-syn fibrils, inhibiting fibril growth by preventing elongation. Using total internal reflection fluorescence (TIRF)-based imaging methods, we show that Hsp27 binds along the surface of α-syn fibrils, decreasing their hydrophobicity. Binding of Hsp27 also inhibits cytotoxicity of α-syn fibrils. Our results demonstrate that the ability of sHsps, such as Hsp27, to bind fibrils represents an important mechanism through which they may mitigate cellular toxicity associated with aberrant protein aggregation. Fibril binding may represent a generic mechanism by which chaperone-active sHsps interact with aggregation-prone proteins, highlighting the potential to target sHsp activity to prevent or disrupt the onset and progression of α-syn aggregation associated with α-synucleinopathies.


Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Neuroblastoma/patologia , Agregados Proteicos , alfa-Sinucleína/metabolismo , Animais , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Camundongos , Chaperonas Moleculares , Neuroblastoma/metabolismo , Células Tumorais Cultivadas , alfa-Sinucleína/genética
11.
Nat Commun ; 9(1): 501, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402931

RESUMO

The plasma membrane (PM) of Saccharomyces cerevisiae contains membrane compartments, MCC/eisosomes and MCPs, named after the protein residents Can1 and Pma1, respectively. Using high-resolution fluorescence microscopy techniques we show that Can1 and the homologous transporter Lyp1 are able to diffuse into the MCC/eisosomes, where a limited number of proteins are conditionally trapped at the (outer) edge of the compartment. Upon addition of substrate, the immobilized proteins diffuse away from the MCC/eisosomes, presumably after taking a different conformation in the substrate-bound state. Our data indicate that the mobile fraction of all integral plasma membrane proteins tested shows extremely slow Brownian diffusion through most of the PM. We also show that proteins with large cytoplasmic domains, such as Pma1 and synthetic chimera of Can1 and Lyp1, are excluded from the MCC/eisosomes. We hypothesize that the distinct localization patterns found for these integral membrane proteins in S. cerevisiae arises from a combination of slow lateral diffusion, steric exclusion, and conditional trapping in membrane compartments.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Membrana Celular/ultraestrutura , Difusão , Recuperação de Fluorescência Após Fotodegradação , Cinética , Microdomínios da Membrana , Conformação Proteica , Transporte Proteico , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nat Commun ; 8(1): 1652, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162829

RESUMO

ATP-binding cassette (ABC) transporters form the largest class of active membrane transport proteins. Binding and hydrolysis of ATP by their highly conserved nucleotide-binding domains drive conformational changes of the complex that mediate transport of substrate across the membrane. The vitamin B12 importer BtuCD-F in Escherichia coli is an extensively studied model system. The periplasmic soluble binding protein BtuF binds the ligand; the transmembrane and ATPase domains BtuCD mediate translocation. Here we report the direct observation at the single-molecule level of ATP, vitamin B12 and BtuF-induced events in the transporter complex embedded in liposomes. Single-molecule fluorescence imaging techniques reveal that membrane-embedded BtuCD forms a stable complex with BtuF, regardless of the presence of ATP and vitamin B12. We observe that a vitamin B12 molecule remains bound to the complex for tens of seconds, during which several ATP hydrolysis cycles can take place, before it is being transported across the membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Vitamina B 12/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/genética , Conformação Proteica
13.
Proc Natl Acad Sci U S A ; 114(1): E28-E36, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27974607

RESUMO

The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a "class I" fusogen) and West Nile virus envelope protein ("class II"). Our study of VSV now extends this description to "class III" viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion.


Assuntos
Bicamadas Lipídicas/metabolismo , Fusão de Membrana/fisiologia , Glicoproteínas de Membrana/metabolismo , Orthomyxoviridae/metabolismo , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Vírus do Nilo Ocidental/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Cricetinae , Corantes Fluorescentes/química , Modelos Moleculares , Conformação Proteica , Células Vero
14.
J Biol Chem ; 291(43): 22534-22543, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27613865

RESUMO

Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed predominantly by the Sec translocase. This system consists of the membrane-embedded protein-conducting channel SecYEG, the motor ATPase SecA, and the heterotrimeric SecDFyajC membrane protein complex. Previous studies suggest that anionic lipids are essential for SecA activity and that the N terminus of SecA is capable of penetrating the lipid bilayer. The role of lipid binding, however, has remained elusive. By employing differently sized nanodiscs reconstituted with single SecYEG complexes and comprising varying amounts of lipids, we establish that SecA gains access to the SecYEG complex via a lipid-bound intermediate state, whereas acidic phospholipids allosterically activate SecA for ATP-dependent protein translocation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfolipídeos/metabolismo , Canais de Translocação SEC/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Bicamadas Lipídicas/química , Fosfolipídeos/química , Fosfolipídeos/genética , Transporte Proteico/fisiologia , Canais de Translocação SEC/química , Canais de Translocação SEC/genética , Proteínas SecA
15.
Biochemistry ; 55(16): 2309-18, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27043933

RESUMO

1953, the year of Watson and Crick, bore witness to a less acclaimed yet highly influential discovery. Jean Weigle demonstrated that upon infection of Escherichia coli, λ phage deactivated by UV radiation, and thus unable to form progeny, could be reactivated by irradiation of the bacterial host. Evelyn Witkin and Miroslav Radman later revealed the presence of the SOS regulon. The more than 40 regulon genes are repressed by LexA protein and induced by the coproteolytic cleavage of LexA, catalyzed by RecA protein bound to single-stranded DNA, the RecA* nucleoprotein filament. Several SOS-induced proteins are engaged in repairing both cellular and extracellular damaged DNA. There's no "free lunch", however, because error-free repair is accompanied by error-prone translesion DNA synthesis (TLS), involving E. coli DNA polymerase V (UmuD'2C) and RecA*. This review describes the biochemical mechanisms of pol V-mediated TLS. pol V is active only as a mutasomal complex, pol V Mut = UmuD'2C-RecA-ATP. RecA* donates a single RecA subunit to pol V. We highlight three recent insights. (1) pol V Mut has an intrinsic DNA-dependent ATPase activity that governs polymerase binding and dissociation from DNA. (2) Active and inactive states of pol V Mut are determined at least in part by the distinct interactions between RecA and UmuC. (3) pol V is activated by RecA*, not at a blocked replisome, but at the inner cell membrane.


Assuntos
Bactérias/genética , Replicação do DNA , DNA Bacteriano/genética , DNA Polimerase Dirigida por DNA/genética , Mutação , Resposta SOS em Genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Bactérias/metabolismo , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagênese , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Regulon , Ativação Transcricional
16.
Chem Sci ; 7(2): 916-920, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26913169

RESUMO

Numerous biological processes involve association of a protein with its binding partner, an event that is preceded by a diffusion-mediated search bringing the two partners together. Often hindered by crowding in biologically relevant environments, three-dimensional diffusion can be slow and result in long bimolecular association times. Similarly, the initial association step between two binding partners often represents a rate-limiting step in biotechnologically relevant reactions. We demonstrate the practical use of an 11-a.a. DNA-interacting peptide derived from adenovirus to reduce the dimensionality of diffusional search processes and speed up associations between biological macromolecules. We functionalise binding partners with the peptide and demonstrate that the ability of the peptide to one-dimensionally diffuse along DNA results in a 20-fold reduction in reaction time. We also show that modifying PCR primers with the peptide sled enables significant acceleration of standard PCR reactions.

17.
Artigo em Inglês | MEDLINE | ID: mdl-26651719

RESUMO

One-dimensional sliding along DNA as a means to accelerate protein target search is a well-known phenomenon occurring in various biological systems. Using a biomimetic approach, we have recently demonstrated the practical use of DNA-sliding peptides to speed up bimolecular reactions more than an order of magnitude by allowing the reactants to associate not only in the solution by three-dimensional (3D) diffusion, but also on DNA via one-dimensional (1D) diffusion [A. Turkin et al., Chem. Sci. (2015)]. Here we present a mean-field kinetic model of a bimolecular reaction in a solution with linear extended sinks (e.g., DNA) that can intermittently trap molecules present in a solution. The model consists of chemical rate equations for mean concentrations of reacting species. Our model demonstrates that addition of linear traps to the solution can significantly accelerate reactant association. We show that at optimum concentrations of linear traps the 1D reaction pathway dominates in the kinetics of the bimolecular reaction; i.e., these 1D traps function as an assembly line of the reaction product. Moreover, we show that the association reaction on linear sinks between trapped reactants exhibits a nonclassical third-order behavior. Predictions of the model agree well with our experimental observations. Our model provides a general description of bimolecular reactions that are controlled by a combined 3D+1D mechanism and can be used to quantitatively describe both naturally occurring as well as biomimetic biochemical systems that reduce the dimensionality of search.


Assuntos
DNA/metabolismo , Modelos Moleculares , Peptídeos/metabolismo , Proteínas/metabolismo , DNA/química , Difusão , Cinética , Conformação de Ácido Nucleico , Soluções
18.
Biophys J ; 108(4): 949-956, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692599

RESUMO

Single-molecule fluorescence microscopy is a powerful tool for observing biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Making use of short-distance energy-transfer mechanisms, only the fluorescence from those proteins that bind to their substrate is activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease on DNA in the presence of a background of hundreds of nanomolar Cy5 fluorophore.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Proteínas Nucleares/química , Fosfoproteínas/química , DNA/química , DNA/metabolismo , Microscopia de Fluorescência/métodos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica
19.
Nature ; 492(7428): 205-9, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23201686

RESUMO

Replicative DNA helicases generally unwind DNA as a single hexamer that encircles and translocates along one strand of the duplex while excluding the complementary strand (known as steric exclusion). By contrast, large T antigen, the replicative DNA helicase of the simian virus 40 (SV40), is reported to function as a pair of stacked hexamers that pumps double-stranded DNA through its central channel while laterally extruding single-stranded DNA. Here we use single-molecule and ensemble assays to show that large T antigen assembled on the SV40 origin unwinds DNA efficiently as a single hexamer that translocates on single-stranded DNA in the 3'-to-5' direction. Unexpectedly, large T antigen unwinds DNA past a DNA-protein crosslink on the translocation strand, suggesting that the large T antigen ring can open to bypass bulky adducts. Together, our data underscore the profound conservation among replicative helicase mechanisms, and reveal a new level of plasticity in the interactions of replicative helicases with DNA damage.


Assuntos
DNA Helicases/metabolismo , Vírus 40 dos Símios/enzimologia , Antígenos Virais de Tumores/metabolismo , Replicação do DNA , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Origem de Replicação/fisiologia , Proteínas Virais/metabolismo
20.
Proc Natl Acad Sci U S A ; 109(41): 16552-7, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012405

RESUMO

Proper timing of gene expression requires that transcription factors (TFs) efficiently locate and bind their target sites within a genome. Theoretical studies have long proposed that one-dimensional sliding along DNA while simultaneously reading its sequence can accelerate TF's location of target sites. Sliding by prokaryotic and eukaryotic TFs were subsequently observed. More recent theoretical investigations have argued that simultaneous reading and sliding is not possible for TFs without their possessing at least two DNA-binding modes. The tumor suppressor p53 has been shown to slide on DNA, and recent experiments have offered structural and single molecule support for a two-mode model for the protein. If the model is applicable to p53, then the requirement that TFs be able to read while sliding implies that noncognate sites will affect p53's mobility on DNA, which will thus be generally sequence-dependent. Here, we confirm this prediction with single-molecule microscopy measurements of p53's local diffusivity on noncognate DNA. We show how a two-mode model accurately predicts the variation in local diffusivity, while a single-mode model does not. We further determine that the best model of sequence-specific binding energy includes terms for "hemi-specific" binding, with one dimer of tetrameric p53 binding specifically to a half-site and the other binding nonspecifically to noncognate DNA. Our work provides evidence that the recognition by p53 of its targets and the timing thereof can depend on its noncognate binding properties and its ability to change between multiple modes of binding, in addition to the much better-studied effects of cognate-site binding.


Assuntos
DNA/genética , DNA/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Algoritmos , Animais , Sequência de Bases , Sítios de Ligação/genética , DNA/química , Regulação da Expressão Gênica , Humanos , Cinética , Modelos Genéticos , Conformação de Ácido Nucleico , Motivos de Nucleotídeos/genética , Ligação Proteica , Multimerização Proteica , Fatores de Transcrição/química , Proteína Supressora de Tumor p53/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA