Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121137

RESUMO

Reprogramming of lipid metabolism directly contributes to malignant transformation and progression. The increased uptake of circulating lipids, the transfer of fatty acids from stromal adipocytes to cancer cells, the de novo fatty acid synthesis, and the fatty acid oxidation support the central role of lipids in many cancers, including prostate cancer (PCa). Fatty acid ß-oxidation is the dominant bioenergetic pathway in PCa and recent evidence suggests that PCa takes advantage of the peroxisome transport machinery to target monocarboxylate transporter 2 (MCT2) to peroxisomes in order to increase ß-oxidation rates and maintain the redox balance. Here we show evidence suggesting that PCa streamlines peroxisome metabolism by upregulating distinct pathways involved in lipid metabolism. Moreover, we show that MCT2 is required for PCa cell proliferation and, importantly, that its specific localization at the peroxisomal membranes is essential for this role. Our results highlight the importance of peroxisomes in PCa development and uncover different cellular mechanisms that may be further explored as possible targets for PCa therapy.

2.
Sci Rep ; 9(1): 10502, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324846

RESUMO

The peroxisomal ABC transporter, Comatose (CTS), a full length transporter from Arabidopsis has intrinsic acyl-CoA thioesterase (ACOT) activity, important for physiological function. We used molecular modelling, mutagenesis and biochemical analysis to identify amino acid residues important for ACOT activity. D863, Q864 and T867 lie within transmembrane helix 9. These residues are orientated such that they might plausibly contribute to a catalytic triad similar to type II Hotdog fold thioesterases. When expressed in Saccharomyces cerevisiae, mutation of these residues to alanine resulted in defective of ß-oxidation. All CTS mutants were expressed and targeted to peroxisomes and retained substrate-stimulated ATPase activity. When expressed in insect cell membranes, Q864A and S810N had similar ATPase activity to wild type but greatly reduced ACOT activity, whereas the Walker A mutant K487A had greatly reduced ATPase and no ATP-dependent ACOT activity. In wild type CTS, ATPase but not ACOT was stimulated by non-cleavable C14 ether-CoA. ACOT activity was stimulated by ATP but not by non-hydrolysable AMPPNP. Thus, ACOT activity depends on functional ATPase activity but not vice versa, and these two activities can be separated by mutagenesis. Whether D863, Q864 and T867 have a catalytic role or play a more indirect role in NBD-TMD communication is discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácido Graxo Sintases/metabolismo , Tioléster Hidrolases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Domínio Catalítico , Linhagem Celular , Ácido Graxo Sintases/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ácido Oleico/metabolismo , Oxirredução , Peroxissomos/enzimologia , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Spodoptera , Relação Estrutura-Atividade , Tioléster Hidrolases/genética
3.
Metabolites ; 9(3)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841653

RESUMO

Oxidative stress plays a role in the onset and progression of a number of diseases, such as Alzheimer's disease, diabetes and cancer, as well as ageing. Oxidative stress is caused by an increased production of reactive oxygen species and reduced antioxidant activity, resulting in the oxidation of glutathione. The ratio of reduced to oxidised glutathione is often used as a marker of the redox state in the cell. Whereas a variety of methods have been developed to measure glutathione in blood samples, methods to measure glutathione in cultured cells are scarce. Here we present a protocol to measure glutathione levels in cultured human and yeast cells using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC⁻MS/MS).

4.
Plant Physiol ; 171(3): 2127-39, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208243

RESUMO

Cofactors such as NAD, AMP, and Coenzyme A (CoA) are essential for a diverse set of reactions and pathways in the cell. Specific carrier proteins are required to distribute these cofactors to different cell compartments, including peroxisomes. We previously identified a peroxisomal transport protein in Arabidopsis (Arabidopsis thaliana) called the peroxisomal NAD carrier (PXN). When assayed in vitro, this carrier exhibits versatile transport functions, e.g. catalyzing the import of NAD or CoA, the exchange of NAD/NADH, and the export of CoA. These observations raise the question about the physiological function of PXN in plants. Here, we used Saccharomyces cerevisiae to address this question. First, we confirmed that PXN, when expressed in yeast, is active and targeted to yeast peroxisomes. Secondl, detailed uptake analyses revealed that the CoA transport function of PXN can be excluded under physiological conditions due to its low affinity for this substrate. Third, we expressed PXN in diverse mutant yeast strains and investigated the suppression of the mutant phenotypes. These studies provided strong evidences that PXN was not able to function as a CoA transporter or a redox shuttle by mediating a NAD/NADH exchange, but instead catalyzed the import of NAD into peroxisomes against AMP in intact yeast cells.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NAD/metabolismo , Proteínas de Arabidopsis/genética , Coenzima A/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais , Proteínas de Transporte de Nucleotídeos , Proteínas de Transporte de Cátions Orgânicos/genética , Peroxissomos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
5.
Proc Natl Acad Sci U S A ; 110(4): 1279-84, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23288899

RESUMO

Peroxisomes are organelles that perform diverse metabolic functions in different organisms, but a common function is ß-oxidation of a variety of long chain aliphatic, branched, and aromatic carboxylic acids. Import of substrates into peroxisomes for ß-oxidation is mediated by ATP binding cassette (ABC) transporter proteins of subfamily D, which includes the human adrenoleukodystropy protein (ALDP) defective in X-linked adrenoleukodystrophy (X-ALD). Whether substrates are transported as CoA esters or free acids has been a matter of debate. Using COMATOSE (CTS), a plant representative of the ABCD family, we demonstrate that there is a functional and physical interaction between the ABC transporter and the peroxisomal long chain acyl-CoA synthetases (LACS)6 and -7. We expressed recombinant CTS in insect cells and showed that membranes from infected cells possess fatty acyl-CoA thioesterase activity, which is stimulated by ATP. A mutant, in which Serine 810 is replaced by asparagine (S810N) is defective in fatty acid degradation in vivo, retains ATPase activity but has strongly reduced thioesterase activity, providing strong evidence for the biological relevance of this activity. Thus, CTS, and most likely the other ABCD family members, represent rare examples of polytopic membrane proteins with an intrinsic additional enzymatic function that may regulate the entry of substrates into the ß-oxidation pathway. The cleavage of CoA raises questions about the side of the membrane where this occurs and this is discussed in the context of the peroxisomal coenzyme A (CoA) budget.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Tioléster Hidrolases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Acil Coenzima A/metabolismo , Adenosina Trifosfatases , Substituição de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico Ativo , Coenzima A Ligases/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Humanos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Peroxissomos/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tioléster Hidrolases/genética
6.
Biochim Biophys Acta ; 1811(3): 148-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21145416

RESUMO

The gene mutated in X-linked adrenoleukodystrophy (X-ALD) codes for the HsABCD1 protein, also named ALDP, which is a member of the superfamily of ATP-binding cassette (ABC) transporters and required for fatty acid transport across the peroxisomal membrane. Although a defective HsABCD1 results in the accumulation of very long-chain fatty acids in plasma of X-ALD patients, there is still no direct biochemical evidence that HsABCD1 actually transports very long-chain fatty acids. We used the yeast Saccharomyces cerevisiae to study the transport of fatty acids across the peroxisomal membrane. Our earlier work showed that in yeast the uptake of fatty acids into peroxisomes may occur via two routes, either as (1.) free fatty acid or as (2.) acyl-CoA ester. The latter route involves the two peroxisomal half-ABC transporters, Pxa1p and Pxa2p, which form a heterodimeric complex in the peroxisomal membrane. We here report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired growth on oleate containing medium and deficient oxidation of oleic acid, cannot only be partially rescued by human ABCD1, but also by human ABCD2 (ALDRP), which indicates that HsABCD1 and HsABCD2 can both function as homodimers. Fatty acid oxidation studies in the pxa1/pxa2Δ mutant transformed with either HsABCD1 or HsABCD2 revealed clear differences suggesting that HsABCD1 and HsABCD2 have distinct substrate specificities. Indeed, full rescue of beta-oxidation activity in cells expressing human ABCD2 was observed with C22:0 and different unsaturated very long-chain fatty acids including C24:6 and especially C22:6 whereas in cells expressing HsABCD1 rescue of beta-oxidation activity was best with C24:0 and C26:0 as substrates.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Membranas Intracelulares/metabolismo , Peroxissomos/metabolismo , Subfamília D de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Ácidos Graxos/genética , Teste de Complementação Genética , Humanos , Mutação , Oxirredução , Peroxissomos/genética , Multimerização Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
7.
J Biol Chem ; 285(39): 29892-902, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20659892

RESUMO

The Arabidopsis ABC transporter Comatose (CTS; AtABCD1) is required for uptake into the peroxisome of a wide range of substrates for ß-oxidation, but it is uncertain whether CTS itself is the transporter or if the transported substrates are free acids or CoA esters. To establish a system for its biochemical analysis, CTS was expressed in Saccharomyces cerevisiae. The plant protein was correctly targeted to yeast peroxisomes, was assembled into the membrane with its nucleotide binding domains in the cytosol, and exhibited basal ATPase activity that was sensitive to aluminum fluoride and abrogated by mutation of a conserved Walker A motif lysine residue. The yeast pxa1 pxa2Δ mutant lacks the homologous peroxisomal ABC transporter and is unable to grow on oleic acid. Consistent with its exhibiting a function in yeast akin to that in the plant, CTS rescued the oleate growth phenotype of the pxa1 pxa2Δ mutant, and restored ß-oxidation of fatty acids with a range of chain lengths and varying degrees of desaturation. When expressed in yeast peroxisomal membranes, the basal ATPase activity of CTS could be stimulated by fatty acyl-CoAs but not by fatty acids. The implications of these findings for the function and substrate specificity of CTS are discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Arabidopsis/enzimologia , Ácidos Graxos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatases , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis , Teste de Complementação Genética , Oxirredução , Especificidade por Substrato
8.
Biochem Biophys Res Commun ; 357(2): 335-40, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17416343

RESUMO

It is well established that peroxisomes play a crucial role in de novo bile acid biosynthesis. The primary bile acids resulting from peroxisomal beta-oxidation are conjugated to either glycine or taurine in the peroxisomal lumen by a bile acid aminotransferase (BAT). These conjugated bile acids are subsequently secreted into the bile. In this paper we show that the export of glycine- and taurine-conjugated bile acids from mammalian peroxisomes proceeds via specific transporter. The transport activity of this protein was detected by reconstitution of peroxisomal membrane proteins in liposomes and measuring the uptake of radiolabeled substrates into these proteoliposomes. The transporter was further characterized using this assay, which led to the identification of DIDS as an inhibitor of the peroxisomal bile-acid transporter, and allowed us to establish some kinetic parameters for the transport activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácidos e Sais Biliares/metabolismo , Membrana Celular/metabolismo , Lipossomos/metabolismo , Peroxissomos/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Bovinos , Células Cultivadas
9.
Pflugers Arch ; 453(5): 719-34, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17039367

RESUMO

This review describes the current state of knowledge about the ABCD family of peroxisomal half adenosine-triphosphate-binding cassette (ABC) transporters. ABCDs are predicted to be present in a variety of eukaryotic organisms, although at present, only ABCDs in the yeast Saccharomyces cerevisiae, the plant Arabidopsis thaliana, and different mammalian species have been identified and characterized to any significant extent. The functional role of none of these ABCDs has been established definitively and awaits successful reconstitution of ABCDs, either as homo- or heterodimers into liposomes, followed by transport studies. Data obtained in S. cerevisiae suggest that the two ABCDs, which have been identified in this organism, form a heterodimer, which actually transports acyl coenzyme A esters across the peroxisomal membrane. In mammals, four ABCDs have been identified, of which one [adrenoleukodystrophy protein (ALDP)] has been implicated in the transport of the coenzyme A esters of very-long-chain fatty acids. Mutations in the gene (ABCD1) encoding ALDP are the cause of a severe X-linked disease, called X-linked adrenoleukodystrophy. The availability of mutant mice in which Abcd1, Abcd2, or Abcd3 have been disrupted will help to resolve the true role of the peroxisomal half-ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Peroxissomos/fisiologia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adenosina Trifosfatases , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Animais , Proteínas de Arabidopsis/fisiologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Filogenia , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
10.
Biochem J ; 401(2): 365-75, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17173541

RESUMO

In recent years, much progress has been made with respect to the unravelling of the functions of peroxisomes in metabolism, and it is now well established that peroxisomes are indispensable organelles, especially in higher eukaryotes. Peroxisomes catalyse a number of essential metabolic functions including fatty acid beta-oxidation, ether phospholipid biosynthesis, fatty acid alpha-oxidation and glyoxylate detoxification. The involvement of peroxisomes in these metabolic pathways necessitates the transport of metabolites in and out of peroxisomes. Recently, considerable progress has been made in the characterization of metabolite transport across the peroxisomal membrane. Peroxisomes posses several specialized transport systems to transport metabolites. This is exemplified by the identification of a specific transporter for adenine nucleotides and several half-ABC (ATP-binding cassette) transporters which may be present as hetero- and homo-dimers. The nature of the substrates handled by the different ABC transporters is less clear. In this review we will describe the current state of knowledge of the permeability properties of the peroxisomal membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Ácidos Graxos/metabolismo , Membranas Intracelulares/metabolismo , Peroxissomos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , NAD/metabolismo , NADP/metabolismo , Peroxinas , Plantas/metabolismo , Porinas/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Cell Sci ; 117(Pt 18): 4231-7, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15316083

RESUMO

Peroxisomes have a central function in lipid metabolism, including the beta-oxidation of various fatty acids. The products and substrates involved in the beta-oxidation have to cross the peroxisomal membrane, which previously has been demonstrated to constitute a closed barrier, implying the existence of specific transport mechanisms. Fatty acid transport across the yeast peroxisomal membrane may follow two routes: one for activated fatty acids, dependent on the peroxisomal ABC half transporter proteins Pxa1p and Pxa2p, and one for free fatty acids, which depends on the peroxisomal acyl-CoA synthetase Faa2p and the ATP transporter Ant1p. A proton gradient across the peroxisomal membrane as part of a proton motive force has been proposed to be required for proper peroxisomal function, but the nature of the peroxisomal pH has remained inconclusive and little is known about its generation. To determine the pH of Sacharomyces cerevisiae peroxisomes in vivo, we have used two different pH-sensitive yellow fluorescent proteins targeted to the peroxisome by virtue of a C-terminal SKL and found the peroxisomal matrix in wild-type cells to be alkaline (pH(per) 8.2), while the cytosolic pH was neutral (pH(cyt) 7.0). No Delta pH was present in ant1 Delta cells, indicating that the peroxisomal pH is regulated in an ATP-dependent way and suggesting that Ant1p activity is directly involved in maintenance of the peroxisomal pH. Moreover, we found a high peroxisomal pH of >8.6 in faa2 Delta cells, while the peroxisomal pH remained 8.1+/-0.2 in pxa2 Delta cells. Our combined results suggest that the proton gradient across the peroxisomal membrane is dependent on Ant1p activity and required for the beta-oxidation of medium chain fatty acids.


Assuntos
Álcalis/metabolismo , Ácidos Graxos/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citosol/metabolismo , Metabolismo Energético/genética , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Peroxidação de Lipídeos/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Oxirredução , Peroxissomos/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA