Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mayo Clin Proc ; 99(2): 218-228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180395

RESUMO

OBJECTIVE: To describe the potential clinical cardiotoxicity of oncological treatments in a cohort of consecutive patients with hypertrophic cardiomyopathy (HCM), systematically followed-up at two national referral centers for HCM. Cardiotoxicity relates to the direct effects of cancer-related treatment on heart function, commonly presenting as left ventricular contractile dysfunction. However, limited data are available regarding cardiotoxic effects on HCM as most studies have not specifically analyzed the effects of oncological treatment in HCM populations. This gap in knowledge may lead to unjustified restriction of HCM patients from receiving curative cancer treatments. METHODS: We retrospectively analyzed clinical and instrumental data of all consecutive HCM patients who underwent oncological treatment between January 2000 and December 2020 collected in a centralized database. RESULTS: Of 3256 HCM patients, 121 (3.7%) had cancer; 110 (90.9%) underwent oncological surgery, 45 (37.2%) received chemotherapy, and 22 (18.2%) received chest radiation therapy (cRT). After a median follow-up of 5.2 years (Q1-Q3: 2-13 years) from oncological diagnosis, 32 patients died. The cumulative survival at 5 years was 79.9%. The cause of death was mainly attributed to the oncological condition, whereas four patients died of sudden cardiac death without receiving previous chemotherapy or cRT. No patient interrupted or reduced the dose of oncological treatment due to cardiac dysfunction. No sustained ventricular tachyarrhythmia was induced by chemotherapy or radiation therapy. CONCLUSION: Cancer treatment was well tolerated in HCM patients. In our consecutive series, none died of cardiovascular complications induced by chemotherapy or cRT and they did not require interruption or substantial treatment tapering due to cardiovascular toxic effects. Although a multidisciplinary evaluation is necessary and regimens must be tailored individually, the diagnosis of HCM per se should not be considered a contraindication to receive optimal curative cancer treatment.


Assuntos
Cardiomiopatia Hipertrófica , Neoplasias , Disfunção Ventricular Esquerda , Humanos , Estudos Retrospectivos , Cardiotoxicidade , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/terapia , Cardiomiopatia Hipertrófica/diagnóstico , Morte Súbita Cardíaca , Neoplasias/complicações , Fatores de Risco
2.
Kidney Int ; 104(5): 995-1007, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598857

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Humanos , Recém-Nascido , Camundongos , Proteínas de Transporte/metabolismo , Cílios/patologia , Rim/metabolismo , Mutação , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/genética , Serina/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
3.
Heart Rhythm ; 20(8): 1158-1166, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164047

RESUMO

BACKGROUND: Truncating variants in filamin C (FLNC) can cause arrhythmogenic cardiomyopathy (ACM) through haploinsufficiency. Noncanonical splice-altering variants may contribute to this phenotype. OBJECTIVE: The purpose of this study was to investigate the clinical and functional consequences of a recurrent FLNC intronic variant of uncertain significance (VUS), c.970-4A>G. METHODS: Clinical data in 9 variant heterozygotes from 4 kindreds were obtained from 5 tertiary health care centers. We used in silico predictors and functional studies with peripheral blood and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Isolated RNA was studied by reverse transcription polymerase chain reaction. iPSC-CMs were further characterized at baseline and after nonsense-mediated decay (NMD) inhibition, using quantitative polymerase chain reaction (qPCR), RNA-sequencing, and cellular electrophysiology. American College of Medical Genetics and Genomics (ACMG) criteria were used to adjudicate variant pathogenicity. RESULTS: Variant heterozygotes displayed a spectrum of disease phenotypes, spanning from mild ventricular dysfunction with palpitations to severe ventricular arrhythmias requiring device shocks or progressive cardiomyopathy requiring heart transplantation. Consistent with in silico predictors, the c.970-4A>G FLNC variant activated a cryptic splice acceptor site, introducing a 3-bp insertion containing a premature termination codon. NMD inhibition upregulated aberrantly spliced transcripts by qPCR and RNA-sequencing. Patch clamp studies revealed irregular spontaneous action potentials, increased action potential duration, and increased sodium late current in proband-derived iPSC-CMs. These findings fulfilled multiple ACMG criteria for pathogenicity. CONCLUSION: Clinical, in silico, and functional evidence support the prediction that the intronic c.970-4A>G VUS disrupts splicing and drives ACM, enabling reclassification from VUS to pathogenic.


Assuntos
Cardiomiopatias , Humanos , Cardiomiopatias/genética , Códon sem Sentido , Filaminas/genética , Mutação , Miócitos Cardíacos , RNA/genética
4.
Acta Neuropathol ; 146(2): 353-368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119330

RESUMO

Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Paraplegia Espástica Hereditária , Animais , Humanos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Peixe-Zebra , Mutação , Neurônios Motores , Receptores do Fator Autócrino de Motilidade/genética
5.
Hum Mutat ; 43(9): 1299-1313, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35607920

RESUMO

Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Processamento Alternativo , Células HeLa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Proteínas do Tecido Nervoso/genética , Antígeno Neuro-Oncológico Ventral , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Ligação a RNA/genética
6.
J Med Genet ; 59(3): 305-312, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33685999

RESUMO

BACKGROUND: Pathogenic germline variants in Transient Receptor Potential Vanilloid 4 Cation Channel (TRPV4) lead to channelopathies, which are phenotypically diverse and heterogeneous disorders grossly divided in neuromuscular disorders and skeletal dysplasia. We recently reported in sporadic giant cell lesions of the jaws (GCLJs) novel, somatic, heterozygous, gain-of-function mutations in TRPV4, at Met713. METHODS: Here we report two unrelated women with a de novo germline p.Leu619Pro TRPV4 variant and an overlapping systemic disorder affecting all organs individually described in TRPV4 channelopathies. RESULTS: From an early age, both patients had several lesions of the nervous system including progressive polyneuropathy, and multiple aggressive giant cell-rich lesions of the jaws and craniofacial/skull bones, and other skeletal lesions. One patient had a relatively milder disease phenotype possibly due to postzygotic somatic mosaicism. Indeed, the TRPV4 p.Leu619Pro variant was present at a lower frequency (variant allele frequency (VAF)=21.6%) than expected for a heterozygous variant as seen in the other proband, and showed variable regional frequency in the GCLJ (VAF ranging from 42% to 10%). In silico structural analysis suggests that the gain-of-function p.Leu619Pro alters the ion channel activity leading to constitutive ion leakage. CONCLUSION: Our findings define a novel polysystemic syndrome due to germline TRPV4 p.Leu619Pro and further extend the spectrum of TRPV4 channelopathies. They further highlight the convergence of TRPV4 mutations on different organ systems leading to complex phenotypes which are further mitigated by possible post-zygotic mosaicism. Treatment of this disorder is challenging, and surgical intervention of the GCLJ worsens the lesions, suggesting the future use of MEK inhibitors and TRPV4 antagonists as therapeutic modalities for unmet clinical needs.


Assuntos
Canalopatias , Polineuropatias , Canais de Potencial de Receptor Transitório , Feminino , Células Gigantes , Humanos , Arcada Osseodentária , Mutação/genética , Crânio , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/genética
7.
Eur J Paediatr Neurol ; 35: 35-39, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34592644

RESUMO

TUBB2B codes for one of the isotypes of ß-tubulin and dominant negative variants in this gene result in distinctive malformations of cortical development (MCD), including dysgyria, dysmorphic basal ganglia and cerebellar anomalies. We present a novel family with a heterozygous missense variant in TUBB2B and an unusually mild phenotype. First, at 21 37 weeks of gestation ultrasonography revealed a fetus with a relatively small head, enlarged lateral ventricles, borderline hypoplastic cerebellum and a thin corpus callosum. The couple opted for pregnancy termination. Exome sequencing on fetal material afterwards identified a heterozygous maternally inherited variant in TUBB2B (NM_178012.4 (TUBB2B):c.530A > T, p.(Asp177Val)), not present in GnomAD and predicted as damaging. The healthy mother had only a language delay in childhood. This inherited TUBB2B variant prompted re-evaluation of the older son of the couple, who presented with a mild delay in motor skills and speech. His MRI revealed mildly enlarged lateral ventricles, a thin corpus callosum, mild cortical dysgyria, and dysmorphic vermis and basal ganglia, a pattern typical of tubulinopathies. This son finally showed the same TUBB2B variant, supporting pathogenicity of the TUBB2B variant. These observations illustrate the wide phenotypic heterogeneity of tubulinopathies, including reduced penetrance and mild expressivity, that require careful evaluation in pre- and postnatal counseling.


Assuntos
Malformações do Desenvolvimento Cortical , Tubulina (Proteína) , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/genética , Mutação , Fenótipo , Gravidez , Tubulina (Proteína)/genética
8.
Am J Med Genet A ; 185(12): 3814-3820, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34254723

RESUMO

Terminal osseous dysplasia with pigmentary defects (TODPD), also known as digitocutaneous dysplasia, is one of the X-linked filaminopathies caused by a variety of FLNA-variants. TODPD is characterized by skeletal defects, skin fibromata and dysmorphic facial features. So far, only a single recurrent variant (c.5217G>A;p.Val1724_Thr1739del) in FLNA has found to be responsible for TODPD. We identified a novel c.5217+5G>C variant in FLNA in a female proband with skeletal defects, skin fibromata, interstitial lung disease, epilepsy, and restrictive cardiomyopathy. This variant causes mis-splicing of exon 31 predicting the production of a FLNA-protein with an in-frame-deletion of 16 residues identical to the miss-splicing-effect of the recurrent TODPD c.5217G>A variant. This mis-spliced transcript was explicitly detected in heart tissue, but was absent from blood, skin, and lung. X-inactivation analyses showed extreme skewing with almost complete inactivation of the mutated allele (>90%) in these tissues, except for heart. The mother of the proband, who also has fibromata and skeletal abnormalities, is also carrier of the FLNA-variant and was diagnosed with noncompaction cardiomyopathy after cardiac screening. No other relevant variants in cardiomyopathy-related genes were found. Here we describe a novel variant in FLNA (c.5217+5G>C) as the second pathogenic variant responsible for TODPD. Cardiomyopathy has not been described as a phenotypic feature of TODPD before.


Assuntos
Cardiomiopatias/genética , Filaminas/genética , Dedos/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Predisposição Genética para Doença , Deformidades Congênitas dos Membros/genética , Osteocondrodisplasias/genética , Transtornos da Pigmentação/genética , Dedos do Pé/anormalidades , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Pré-Escolar , Feminino , Dedos/patologia , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Deformidades Congênitas dos Membros/complicações , Deformidades Congênitas dos Membros/patologia , Mutação/genética , Osteocondrodisplasias/complicações , Osteocondrodisplasias/patologia , Fenótipo , Transtornos da Pigmentação/complicações , Transtornos da Pigmentação/patologia , Deleção de Sequência/genética , Dedos do Pé/patologia , Inativação do Cromossomo X/genética
9.
Int J Cardiol ; 323: 133-139, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32841616

RESUMO

BACKGROUND: Sex disparities are common in hypertrophic cardiomyopathy (HCM). Previous research has shown that at time of myectomy, women are older, have greater impairment of diastolic function and more advanced cardiac remodeling. The clinical impact of these differences is unknown. METHOD: This study included 162 HCM patients (61% men) who underwent septal myectomy. Time to treatment was calculated in relation to symptom onset and diagnosis. Pre- and post-operative echocardiographic data were collected. Sex differences were assessed at baseline and in time-to-event survival analyses for the composite endpoint of all-cause mortality, cardiac transplantation, re-intervention and aborted sudden cardiac death. RESULTS: Women were generally older at time of myectomy (57 vs. 49 years, p < 0.01), with similar time to treatment as measured from symptom onset (2.3 [1.3-6.0] vs. 2.8 [1.1-5.3] years, p > 0.05), but a shorter time since diagnosis compared to men (2.6 [1.2-7.0] vs. 4.3 [2.4-8.3] years, p = 0.02). Mean wall thickness and left atrial diameter were the same for men and women, but were higher in women when correcting for body surface area (absolute: 20 vs. 19 mm, 48 vs 46 mm, p ≥ 0.05; corrected: 9.7 vs. 11.2 mm/m2, 23.4 vs. 26.3 mm/m2, p < 0.01). After 5.9 [3.0-9.1] years, 15% of men and 8% of women had reached the composite endpoint (p > 0.05). CONCLUSION: In conclusion, although women present later in life and seem to have more advanced disease on echocardiography, time until myectomy was similar and clinical outcomes after myectomy are favourable for both men and women.


Assuntos
Cardiomiopatia Hipertrófica , Septos Cardíacos , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/cirurgia , Ponte de Artéria Coronária , Ecocardiografia , Feminino , Átrios do Coração , Septos Cardíacos/diagnóstico por imagem , Septos Cardíacos/cirurgia , Humanos , Masculino , Resultado do Tratamento
10.
Am J Hum Genet ; 107(6): 1096-1112, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232675

RESUMO

SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.


Assuntos
Proteínas Cromossômicas não Histona/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Criança , Pré-Escolar , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Genes Dominantes , Variação Genética , Haploinsuficiência , Humanos , Lactente , Masculino , Microscopia Confocal , Neuroglia/metabolismo , Neurônios/metabolismo , Ligação Proteica , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
11.
Nat Commun ; 11(1): 4287, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855419

RESUMO

Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DDX11 is essential for sister chromatid cohesion and resistance to G4 stabilizers. We propose that DDX11 is a DNA helicase protecting against G4 induced double-stranded breaks and concomitant loss of cohesion, possibly at DNA replication forks.


Assuntos
Anormalidades Múltiplas/etiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Quadruplex G , Troca de Cromátide Irmã , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Proliferação de Células , RNA Helicases DEAD-box/química , DNA Helicases/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Estabilidade Proteica , Pseudogenes , RNA Helicases/genética , RNA Helicases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Síndrome , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Am J Med Genet A ; 179(11): 2170-2177, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31353810

RESUMO

Here we report on a Brazilian child who presented semilobar holoprosencephaly, frontonasal encephaloceles and bilateral cleft lip and palate. Malformations also included agenesis of the corpus callosum, abnormal cortical gyres, dilation of the aqueduct, bilateral endolymphatic sac, bilateral cystic cocci-vestibular malformation, and a cribriform defect. The 3D TC craniofacial images showed abnormal frontonasal transition region, with a bone bifurcation, and partial agenesis of nasal bone. The trunk and upper and lower limbs were normal. To our knowledge, this rare association of holoprocensephaly with frontonaso-orbital encephaloceles without limb anomalies has never been reported before. Karyotype was normal. SNP-array showed no copy-number alterations but revealed 25% of regions of homozygosity (ROH) with normal copy number, indicating a high coefficient of inbreeding, which significantly increases the risk for an autosomal recessive disorder. Whole exome sequencing analysis did not reveal any pathogenic or likely pathogenic variants. We discuss the possible influence of two variants of uncertain significance found within the patient's ROHs. First, a missense p.(Gly394Ser) in PCSK9, a gene involved in the regulation of plasma low-density lipoprotein cholesterol. Second, an inframe duplication p.(Ala75_Ala81dup) in SP8, a zinc-finger transcription factor that regulates signaling centers during craniofacial development. Further studies and/or the identification of other patients with a similar phenotype will help elucidate the genetic etiology of this complex case.


Assuntos
Fenda Labial/diagnóstico , Fenda Labial/genética , Fissura Palatina/diagnóstico , Fissura Palatina/genética , Encefalocele/diagnóstico , Encefalocele/genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Mapeamento Cromossômico , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Síndrome , Tomografia Computadorizada por Raios X , Sequenciamento do Exoma
13.
Am J Hum Genet ; 104(3): 520-529, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30824121

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes responsible for charging tRNA molecules with cognate amino acids. Consistent with the essential function and ubiquitous expression of ARSs, mutations in 32 of the 37 ARS-encoding loci cause severe, early-onset recessive phenotypes. Previous genetic and functional data suggest a loss-of-function mechanism; however, our understanding of the allelic and locus heterogeneity of ARS-related disease is incomplete. Cysteinyl-tRNA synthetase (CARS) encodes the enzyme that charges tRNACys with cysteine in the cytoplasm. To date, CARS variants have not been implicated in any human disease phenotype. Here, we report on four subjects from three families with complex syndromes that include microcephaly, developmental delay, and brittle hair and nails. Each affected person carries bi-allelic CARS variants: one individual is compound heterozygous for c.1138C>T (p.Gln380∗) and c.1022G>A (p.Arg341His), two related individuals are compound heterozygous for c.1076C>T (p.Ser359Leu) and c.1199T>A (p.Leu400Gln), and one individual is homozygous for c.2061dup (p.Ser688Glnfs∗2). Measurement of protein abundance, yeast complementation assays, and assessments of tRNA charging indicate that each CARS variant causes a loss-of-function effect. Compared to subjects with previously reported ARS-related diseases, individuals with bi-allelic CARS variants are unique in presenting with a brittle-hair-and-nail phenotype, which most likely reflects the high cysteine content in human keratins. In sum, our efforts implicate CARS variants in human inherited disease, expand the locus and clinical heterogeneity of ARS-related clinical phenotypes, and further support impaired tRNA charging as the primary mechanism of recessive ARS-related disease.


Assuntos
Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/etiologia , Deficiências do Desenvolvimento/etiologia , Doenças do Cabelo/etiologia , Microcefalia/etiologia , Mutação , Doenças da Unha/etiologia , Adulto , Sequência de Aminoácidos , Doença de Charcot-Marie-Tooth/enzimologia , Doença de Charcot-Marie-Tooth/patologia , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/patologia , Feminino , Genes Recessivos , Predisposição Genética para Doença , Doenças do Cabelo/enzimologia , Doenças do Cabelo/patologia , Humanos , Masculino , Microcefalia/enzimologia , Microcefalia/patologia , Doenças da Unha/enzimologia , Doenças da Unha/patologia , Linhagem , Fenótipo , Prognóstico , Homologia de Sequência , Adulto Jovem
15.
Am J Hum Genet ; 103(6): 1009-1021, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30471716

RESUMO

To date, mutations in 15 actin- or microtubule-associated genes have been associated with the cortical malformation lissencephaly and variable brainstem hypoplasia. During a multicenter review, we recognized a rare lissencephaly variant with a complex brainstem malformation in three unrelated children. We searched our large brain-malformation databases and found another five children with this malformation (as well as one with a less severe variant), analyzed available whole-exome or -genome sequencing data, and tested ciliogenesis in two affected individuals. The brain malformation comprised posterior predominant lissencephaly and midline crossing defects consisting of absent anterior commissure and a striking W-shaped brainstem malformation caused by small or absent pontine crossing fibers. We discovered heterozygous de novo missense variants or an in-frame deletion involving highly conserved zinc-binding residues within the GAR domain of MACF1 in the first eight subjects. We studied cilium formation and found a higher proportion of mutant cells with short cilia than of control cells with short cilia. A ninth child had similar lissencephaly but only subtle brainstem dysplasia associated with a heterozygous de novo missense variant in the spectrin repeat domain of MACF1. Thus, we report variants of the microtubule-binding GAR domain of MACF1 as the cause of a distinctive and most likely pathognomonic brain malformation. A gain-of-function or dominant-negative mechanism appears likely given that many heterozygous mutations leading to protein truncation are included in the ExAC Browser. However, three de novo variants in MACF1 have been observed in large schizophrenia cohorts.


Assuntos
Orientação de Axônios/genética , Movimento Celular/genética , Sequência Conservada/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Neurônios/patologia , Zinco/metabolismo , Adolescente , Tronco Encefálico/patologia , Criança , Pré-Escolar , Cílios/genética , Feminino , Humanos , Lisencefalia/genética , Masculino , Microtúbulos/genética , Malformações do Sistema Nervoso/genética
16.
Eur J Med Genet ; 61(12): 783-789, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30391508

RESUMO

Heterozygous gain of function mutations in the ZIC1 gene have been described with syndromic craniosynostosis, variable cerebral or cerebellar abnormalities and mild to moderate developmental delay. Deletion of chromosome 3q25.1 including both adjacent ZIC1 and ZIC4 genes have been described as a cause of variable cerebellar abnormalities including Dandy-Walker malformation. We report two siblings presenting with neonatal microcephaly, agenesis of the corpus callosum, brachycephaly with reduced volume of the posterior fossa, cerebellar and pons hypoplasia, scoliosis and tethered cord (closed neural tube defect). One of the siblings had apparent partial rhombencephalosynapsis. Trio analysis of exome sequencing data revealed a novel heterozygous frameshift mutation in ZIC1 at the end of exon 3 in one sibling and was confirmed by Sanger sequencing in both children. The mutation was not detected in DNA of both parents, which suggests parental gonadal mosaicism. We show that expression of the mutant allele leads to synthesis of a stable abnormal transcript in patient cells, without evidence for nonsense-mediated decay. Craniosynostosis was not present at birth, which explains why ZIC1 mutations were not initially considered. This severe brain malformation indicates that premature closure of sutures can be independent of the abnormal brain development in subjects with pathogenic variants in ZIC1.


Assuntos
Craniossinostoses/genética , Malformações do Desenvolvimento Cortical/genética , Microcefalia/genética , Fatores de Transcrição/genética , Adolescente , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/fisiopatologia , Cerebelo/fisiopatologia , Criança , Pré-Escolar , Craniossinostoses/fisiopatologia , Feminino , Mutação da Fase de Leitura , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/fisiopatologia , Microcefalia/fisiopatologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/fisiopatologia , Fenótipo , Escoliose/genética , Escoliose/fisiopatologia
17.
PLoS Genet ; 13(5): e1006809, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542170

RESUMO

Integrator is an RNA polymerase II (RNAPII)-associated complex that was recently identified to have a broad role in both RNA processing and transcription regulation. Importantly, its role in human development and disease is so far largely unexplored. Here, we provide evidence that biallelic Integrator Complex Subunit 1 (INTS1) and Subunit 8 (INTS8) gene mutations are associated with rare recessive human neurodevelopmental syndromes. Three unrelated individuals of Dutch ancestry showed the same homozygous truncating INTS1 mutation. Three siblings harboured compound heterozygous INTS8 mutations. Shared features by these six individuals are severe neurodevelopmental delay and a distinctive appearance. The INTS8 family in addition presented with neuronal migration defects (periventricular nodular heterotopia). We show that the first INTS8 mutation, a nine base-pair deletion, leads to a protein that disrupts INT complex stability, while the second missense mutation introduces an alternative splice site leading to an unstable messenger. Cells from patients with INTS8 mutations show increased levels of unprocessed UsnRNA, compatible with the INT function in the 3'-end maturation of UsnRNA, and display significant disruptions in gene expression and RNA processing. Finally, the introduction of the INTS8 deletion mutation in P19 cells using genome editing alters gene expression throughout the course of retinoic acid-induced neural differentiation. Altogether, our results confirm the essential role of Integrator to transcriptome integrity and point to the requirement of the Integrator complex in human brain development.


Assuntos
Deficiências do Desenvolvimento/genética , Deleção de Genes , Mutação de Sentido Incorreto , Subunidades Proteicas/genética , RNA Mensageiro/metabolismo , Adulto , Processamento Alternativo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Criança , Deficiências do Desenvolvimento/diagnóstico , Feminino , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , Síndrome , Transcriptoma , Proteína Wnt1
19.
Circ Res ; 112(11): 1491-505, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23508784

RESUMO

RATIONALE: High-myofilament Ca(2+) sensitivity has been proposed as a trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) on the basis of in vitro and transgenic mice studies. However, myofilament Ca(2+) sensitivity depends on protein phosphorylation and muscle length, and at present, data in humans are scarce. OBJECTIVE: To investigate whether high myofilament Ca(2+) sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick and thin filament proteins. METHODS AND RESULTS: Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca(2+) sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA) targets compared with donors. After exogenous PKA treatment, myofilament Ca(2+) sensitivity was similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. CONCLUSIONS: High-myofilament Ca(2+) sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via posttranslational modifications other than PKA hypophosphorylation or altered protein-protein interactions, and represents a common pathomechanism in HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Miofibrilas/patologia , Miofibrilas/fisiologia , Sarcômeros/patologia , Sarcômeros/fisiologia , Adolescente , Adulto , Idoso , Animais , Cálcio/metabolismo , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Contração Isométrica/fisiologia , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases , Tropomiosina/genética , Troponina T/genética , Adulto Jovem
20.
Circ Heart Fail ; 5(1): 36-46, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22178992

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM), typically characterized by asymmetrical left ventricular hypertrophy, frequently is caused by mutations in sarcomeric proteins. We studied if changes in sarcomeric properties in HCM depend on the underlying protein mutation. METHODS AND RESULTS: Comparisons were made between cardiac samples from patients carrying a MYBPC3 mutation (MYBPC3(mut); n=17), mutation negative HCM patients without an identified sarcomere mutation (HCM(mn); n=11), and nonfailing donors (n=12). All patients had normal systolic function, but impaired diastolic function. Protein expression of myosin binding protein C (cMyBP-C) was significantly lower in MYBPC3(mut) by 33±5%, and similar in HCM(mn) compared with donor. cMyBP-C phosphorylation in MYBPC3(mut) was similar to donor, whereas it was significantly lower in HCM(mn). Troponin I phosphorylation was lower in both patient groups compared with donor. Force measurements in single permeabilized cardiomyocytes demonstrated comparable sarcomeric dysfunction in both patient groups characterized by lower maximal force generating capacity in MYBPC3(mut) and HCM(mn,) compared with donor (26.4±2.9, 28.0±3.7, and 37.2±2.3 kN/m(2), respectively), and higher myofilament Ca(2+)-sensitivity (EC(50)=2.5±0.2, 2.4±0.2, and 3.0±0.2 µmol/L, respectively). The sarcomere length-dependent increase in Ca(2+)-sensitivity was significantly smaller in both patient groups compared with donor (ΔEC(50): 0.46±0.04, 0.37±0.05, and 0.75±0.07 µmol/L, respectively). Protein kinase A treatment restored myofilament Ca(2+)-sensitivity and length-dependent activation in both patient groups to donor values. CONCLUSIONS: Changes in sarcomere function reflect the clinical HCM phenotype rather than the specific MYBPC3 mutation. Hypocontractile sarcomeres are a common deficit in human HCM with normal systolic left ventricular function and may contribute to HCM disease progression.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Mutação/genética , Contração Miocárdica/fisiologia , Função Ventricular Esquerda/fisiologia , Adulto , Idoso , Pressão Sanguínea/fisiologia , Cálcio/fisiologia , Cardiomiopatia Hipertrófica/patologia , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Diástole/fisiologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Sarcômeros/efeitos dos fármacos , Sarcômeros/fisiologia , Sístole/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA