Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(11)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753465

RESUMO

Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Fígado , Sirolimo , Animais , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Dependovirus/genética , Terapia Genética/métodos , Camundongos , Fígado/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Músculo Esquelético/metabolismo , Fenótipo , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Humanos , Masculino
2.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015640

RESUMO

Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Doença de Depósito de Glicogênio Tipo III , Humanos , Camundongos , Ratos , Animais , Doença de Depósito de Glicogênio Tipo III/genética , Doença de Depósito de Glicogênio Tipo III/terapia , Sistema da Enzima Desramificadora do Glicogênio/genética , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Transgenes
3.
Nat Commun ; 12(1): 6393, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737297

RESUMO

Pompe disease (PD) is a severe neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). PD is currently treated with enzyme replacement therapy (ERT) with intravenous infusions of recombinant human GAA (rhGAA). Although the introduction of ERT represents a breakthrough in the management of PD, the approach suffers from several shortcomings. Here, we developed a mouse model of PD to compare the efficacy of hepatic gene transfer with adeno-associated virus (AAV) vectors expressing secretable GAA with long-term ERT. Liver expression of GAA results in enhanced pharmacokinetics and uptake of the enzyme in peripheral tissues compared to ERT. Combination of gene transfer with pharmacological chaperones boosts GAA bioavailability, resulting in improved rescue of the PD phenotype. Scale-up of hepatic gene transfer to non-human primates also successfully results in enzyme secretion in blood and uptake in key target tissues, supporting the ongoing clinical translation of the approach.


Assuntos
Doença de Depósito de Glicogênio Tipo II/enzimologia , alfa-Glucosidases/metabolismo , Animais , Autofagia , Terapia de Reposição de Enzimas , Feminino , Doença de Depósito de Glicogênio Tipo II/terapia , Fígado/enzimologia , Masculino , Camundongos , alfa-Glucosidases/genética
4.
Sci Adv ; 7(44): eabj5018, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705504

RESUMO

Adeno-associated virus (AAV) vectors are a well-established gene transfer approach for rare genetic diseases. Nonetheless, some tissues, such as bone, remain refractory to AAV. X-linked hypophosphatemia (XLH) is a rare skeletal disorder associated with increased levels of fibroblast growth factor 23 (FGF23), resulting in skeletal deformities and short stature. The conventional treatment for XLH, lifelong phosphate and active vitamin D analogs supplementation, partially improves quality of life and is associated with severe long-term side effects. Recently, a monoclonal antibody against FGF23 has been approved for XLH but remains a high-cost lifelong therapy. We developed a liver-targeting AAV vector to inhibit FGF23 signaling. We showed that hepatic expression of the C-terminal tail of FGF23 corrected skeletal manifestations and osteomalacia in a XLH mouse model. Our data provide proof of concept for AAV gene transfer to treat XLH, a prototypical bone disease, further expanding the use of this modality to treat skeletal disorders.

5.
EBioMedicine ; 61: 103052, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33039711

RESUMO

BACKGROUND: Pompe disease (PD) is a neuromuscular disorder caused by deficiency of acidalpha-glucosidase (GAA), leading to motor and respiratory dysfunctions. Available Gaa knock-out (KO) mouse models do not accurately mimic PD, particularly its highly impaired respiratory phenotype. METHODS: Here we developed a new mouse model of PD crossing Gaa KOB6;129 with DBA2/J mice. We subsequently treated Gaa KODBA2/J mice with adeno-associated virus (AAV) vectors expressing a secretable form of GAA (secGAA). FINDINGS: Male Gaa KODBA2/J mice present most of the key features of the human disease, including early lethality, severe respiratory impairment, cardiac hypertrophy and muscle weakness. Transcriptome analyses of Gaa KODBA2/J, compared to the parental Gaa KOB6;129 mice, revealed a profoundly impaired gene signature in the spinal cord and a similarly deregulated gene expression in skeletal muscle. Muscle and spinal cord transcriptome changes, biochemical defects, respiratory and muscle function in the Gaa KODBA2/J model were significantly improved upon gene therapy with AAV vectors expressing secGAA. INTERPRETATION: These data show that the genetic background impacts on the severity of respiratory function and neuroglial spinal cord defects in the Gaa KO mouse model of PD. Our findings have implications for PD prognosis and treatment, show novel molecular pathophysiology mechanisms of the disease and provide a unique model to study PD respiratory defects, which majorly affect patients. FUNDING: This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics.


Assuntos
Terapia Genética , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Fenótipo , Medula Espinal/metabolismo , alfa-Glucosidases/genética , Alelos , Animais , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Homozigoto , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Força Muscular/genética , Músculo Esquelético , Prognóstico , Medula Espinal/fisiopatologia , Transdução Genética , Resultado do Tratamento , alfa-Glucosidases/metabolismo
6.
Mol Ther ; 28(9): 2056-2072, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32526204

RESUMO

Pompe disease is a neuromuscular disorder caused by disease-associated variants in the gene encoding for the lysosomal enzyme acid α-glucosidase (GAA), which converts lysosomal glycogen to glucose. We previously reported full rescue of Pompe disease in symptomatic 4-month-old Gaa knockout (Gaa-/-) mice by adeno-associated virus (AAV) vector-mediated liver gene transfer of an engineered secretable form of GAA (secGAA). Here, we showed that hepatic expression of secGAA rescues the phenotype of 4-month-old Gaa-/- mice at vector doses at which the native form of GAA has little to no therapeutic effect. Based on these results, we then treated severely affected 9-month-old Gaa-/- mice with an AAV vector expressing secGAA and followed the animals for 9 months thereafter. AAV-treated Gaa-/- mice showed complete reversal of the Pompe phenotype, with rescue of glycogen accumulation in most tissues, including the central nervous system, and normalization of muscle strength. Transcriptomic profiling of skeletal muscle showed rescue of most altered pathways, including those involved in mitochondrial defects, a finding supported by structural and biochemical analyses, which also showed restoration of lysosomal function. Together, these results provide insight into the reversibility of advanced Pompe disease in the Gaa-/- mouse model via liver gene transfer of secGAA.


Assuntos
Terapia Genética/métodos , Doença de Depósito de Glicogênio Tipo II/metabolismo , Doença de Depósito de Glicogênio Tipo II/terapia , Fígado/metabolismo , Via Secretória/genética , Transfecção/métodos , alfa-Glucosidases/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/genética , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Fenótipo , Transdução de Sinais/genética , Transcriptoma , Resultado do Tratamento , alfa-Glucosidases/genética
7.
Sci Rep ; 10(1): 864, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965041

RESUMO

Neutralizing antibodies directed against adeno-associated virus (AAV) are commonly found in humans. In seropositive subjects, vector administration is not feasible as antibodies neutralize AAV vectors even at low titers. Consequently, a relatively large proportion of humans is excluded from enrollment in clinical trials and, similarly, vector redosing is not feasible because of development of high-titer antibodies following AAV vector administration. Plasmapheresis has been proposed as strategy to remove anti-AAV antibodies from the bloodstream. Although safe and relatively effective, the technology has some limitations mainly related to the nonspecific removal of all circulating IgG. Here we developed an AAV-specific plasmapheresis column which was shown to efficiently and selectively deplete anti-AAV antibodies without depleting the total immunoglobulin pool from plasma. We showed the nearly complete removal of anti-AAV antibodies from high titer purified human IgG pools and plasma samples, decreasing titers to levels that allow AAV vector administration in mice. These results provide proof-of-concept of a method for the AAV-specific depletion of neutralizing antibodies in the setting of in vivo gene transfer.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Capsídeo , Dependovirus/imunologia , Vetores Genéticos/imunologia , Imunoglobulina G/isolamento & purificação , Plasmaferese/métodos , Animais , Técnicas de Transferência de Genes , Humanos , Camundongos
8.
Nat Commun ; 9(1): 4098, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291246

RESUMO

Gene therapy mediated by recombinant adeno-associated virus (AAV) vectors is a promising treatment for systemic monogenic diseases. However, vector immunogenicity represents a major limitation to gene transfer with AAV vectors, particularly for vector re-administration. Here, we demonstrate that synthetic vaccine particles encapsulating rapamycin (SVP[Rapa]), co-administered with AAV vectors, prevents the induction of anti-capsid humoral and cell-mediated responses. This allows successful vector re-administration in mice and nonhuman primates. SVP[Rapa] dosed with AAV vectors reduces B and T cell activation in an antigen-selective manner, inhibits CD8+ T cell infiltration in the liver, and efficiently blocks memory T cell responses. SVP[Rapa] immunomodulatory effects can be transferred from treated to naive mice by adoptive transfer of splenocytes, and is inhibited by depletion of CD25+ T cells, suggesting a role for regulatory T cells. Co-administration of SVP[Rapa] with AAV vector represents a powerful strategy to modulate vector immunogenicity and enable effective vector re-administration.


Assuntos
Dependovirus/imunologia , Terapia Genética , Vetores Genéticos/imunologia , Imunossupressores/administração & dosagem , Sirolimo/administração & dosagem , Animais , Avaliação Pré-Clínica de Medicamentos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas , Linfócitos T/efeitos dos fármacos
9.
Mol Ther Methods Clin Dev ; 9: 119-129, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29766022

RESUMO

Pre-existing immunity to adeno-associated virus (AAV) is highly prevalent in humans and can profoundly impact transduction efficiency. Despite the relevance to AAV-mediated gene transfer, relatively little is known about the fate of AAV vectors in the presence of neutralizing antibodies (NAbs). Similarly, the effect of binding antibodies (BAbs), with no detectable neutralizing activity, on AAV transduction is ill defined. Here, we delivered AAV8 vectors to mice carrying NAbs and demonstrated that AAV particles are taken up by both liver parenchymal and non-parenchymal cells; viral particles are then rapidly cleared, without resulting in transgene expression. In vitro, imaging of hepatocytes exposed to AAV vectors pre-incubated with either NAbs or BAbs revealed that virus is taken up by cells in both cases. Whereas no successful transduction was observed when AAV was pre-incubated with NAbs, an increased capsid internalization and transgene expression was observed in the presence of BAbs. Accordingly, AAV8 vectors administered to mice passively immunized with anti-AAV8 BAbs showed a more efficient liver transduction and a unique vector biodistribution profile compared to mice immunized with NAbs. These results highlight a virtually opposite effect of neutralizing and binding antibodies on AAV vectors transduction.

10.
Mol Ther ; 26(3): 890-901, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29396266

RESUMO

Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder caused by a deficiency of glycogen-debranching enzyme (GDE), which results in profound liver metabolism impairment and muscle weakness. To date, no cure is available for GSDIII and current treatments are mostly based on diet. Here we describe the development of a mouse model of GSDIII, which faithfully recapitulates the main features of the human condition. We used this model to develop and test novel therapies based on adeno-associated virus (AAV) vector-mediated gene transfer. First, we showed that overexpression of the lysosomal enzyme alpha-acid glucosidase (GAA) with an AAV vector led to a decrease in liver glycogen content but failed to reverse the disease phenotype. Using dual overlapping AAV vectors expressing the GDE transgene in muscle, we showed functional rescue with no impact on glucose metabolism. Liver expression of GDE, conversely, had a direct impact on blood glucose levels. These results provide proof of concept of correction of GSDIII with AAV vectors, and they indicate that restoration of the enzyme deficiency in muscle and liver is necessary to address both the metabolic and neuromuscular manifestations of the disease.


Assuntos
Terapia Genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio Tipo III/genética , Doença de Depósito de Glicogênio Tipo III/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Animais , Biomarcadores , Glicemia , Dependovirus/genética , Modelos Animais de Doenças , Ativação Enzimática , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glicogênio/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo III/diagnóstico , Doença de Depósito de Glicogênio Tipo III/terapia , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos
11.
Sci Transl Med ; 9(418)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187643

RESUMO

Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa-/-) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa-/- mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector-mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease.


Assuntos
Dependovirus/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Fígado/metabolismo , Animais , Terapia Genética , Vetores Genéticos , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/fisiologia
12.
Blood Adv ; 1(23): 2019-2031, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29296848

RESUMO

Results from clinical trials of liver gene transfer for hemophilia demonstrate the potential of the adeno-associated virus (AAV) vector platform. However, to achieve therapeutic transgene expression, in some cases high vector doses are required, which are associated with a higher risk of triggering anti-capsid cytotoxic T-cell responses. Additionally, anti-AAV preexisting immunity can prevent liver transduction even at low neutralizing antibody (NAb) titers. Here, we describe the use of exosome-associated AAV (exo-AAV) vectors as a robust liver gene delivery system that allows the therapeutic vector dose to be decreased while protecting from preexisting humoral immunity to the capsid. The in vivo efficiency of liver targeting of standard AAV8 or AAV5 and exo-AAV8 or exo-AAV5 vectors expressing human coagulation factor IX (hF.IX) was evaluated. A significant enhancement of transduction efficiency was observed, and in hemophilia B mice treated with 4 × 1010 vector genomes per kilogram of exo-AAV8 vectors, a staggering ∼1 log increase in hF.IX transgene expression was observed, leading to superior correction of clotting time. Enhanced liver expression was also associated with an increase in the frequency of regulatory T cells in lymph nodes. The efficiency of exo- and standard AAV8 vectors in evading preexisting NAbs to the capsid was then evaluated in a passive immunization mouse model and in human sera. Exo-AAV8 gene delivery allowed for efficient transduction even in the presence of moderate NAb titers, thus potentially extending the proportion of subjects eligible for liver gene transfer. Exo-AAV vectors therefore represent a platform to improve the safety and efficacy of liver-directed gene transfer.

13.
Mol Ther Nucleic Acids ; 5(11): e392, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27898092

RESUMO

Disease-causing splicing mutations can be rescued by variants of the U1 small nuclear RNA (U1snRNAs). However, the evaluation of the efficacy and safety of modified U1snRNAs as therapeutic tools is limited by the availability of cellular and animal models specific for a given mutation. Hence, we exploited the hyperactive Sleeping Beauty transposon system (SB100X) to integrate human factor IX (hFIX) minigenes into genomic DNA in vitro and in vivo. We generated stable HEK293 cell lines and C57BL/6 mice harboring splicing-competent hFIX minigenes either wild type (SChFIX-wt) or mutated (SChFIXex5-2C). In both models the SChFIXex5-2C variant, found in patients affected by Hemophilia B, displayed an aberrant splicing pattern characterized by exon 5 skipping. This allowed us to test, for the first time in a genomic DNA context, the efficacy of the snRNA U1-fix9, delivered with an adeno-associated virus (AAV) vector. With this approach, we showed rescue of the correct splicing pattern of hFIX mRNA, leading to hFIX protein expression. These data validate the SB100X as a versatile tool to quickly generate models of human genetic mutations, to study their effect in a stable DNA context and to assess mutation-targeted therapeutic strategies.

14.
Mol Ther Methods Clin Dev ; 3: 16049, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27722180

RESUMO

Crigler-Najjar syndrome is a severe metabolic disease of the liver due to a reduced activity of the UDP Glucuronosyltransferase 1A1 (UGT1A1) enzyme. In an effort to translate to the clinic an adeno-associated virus vector mediated liver gene transfer approach to treat Crigler-Najjar syndrome, we developed and optimized a vector expressing the UGT1A1 transgene. For this purpose, we designed and tested in vitro and in vivo multiple codon-optimized UGT1A1 transgene cDNAs. We also optimized noncoding sequences in the transgene expression cassette. Our results indicate that transgene codon-optimization is a strategy that can improve efficacy of gene transfer but needs to be carefully tested in vitro and in vivo. Additionally, while inclusion of introns can enhance gene expression, optimization of these introns, and in particular removal of cryptic ATGs and splice sites, is an important maneuver to enhance safety and efficacy of gene transfer. Finally, using a translationally optimized adeno-associated virus vector expressing the UGT1A1 transgene, we demonstrated rescue of the phenotype of Crigler-Najjar syndrome in two animal models of the disease, Gunn rats and Ugt1a1-/- mice. We also showed long-term (>1 year) correction of the disease in Gunn rats. These results support further translation of the approach to humans.

15.
Mol Ther Methods Clin Dev ; 3: 16060, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652289

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery.

16.
Mol Ther Methods Clin Dev ; 2: 15010, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029721

RESUMO

Preclinical gene therapy strategies using recombinant adeno-associated virus (AAV) vectors in animal models of Duchenne muscular dystrophy have shown dramatic phenotype improvements, but long-lasting efficacy remains questionable. It is believed that in dystrophic muscles, transgene persistence is hampered, notably by the progressive loss of therapeutic vector genomes resulting from muscle fibers degeneration. Intracellular metabolic perturbations resulting from dystrophin deficiency could also be additional factors impacting on rAAV genomes and transgene mRNA molecular fate. In this study, we showed that rAAV genome loss is not the only cause of reduced transgene mRNA level and we assessed the contribution of transcriptional and post-transcriptional factors. We ruled out the implication of transgene silencing by epigenetic mechanisms and demonstrated that rAAV inhibition occurred mostly at the post-transcriptional level. Since Duchenne muscular dystrophy (DMD) physiopathology involves an elevated oxidative stress, we hypothesized that in dystrophic muscles, transgene mRNA could be damaged by oxidative stress. In the mouse and dog dystrophic models, we found that rAAV-derived mRNA oxidation was increased. Interestingly, when a high expression level of a therapeutic transgene is achieved, oxidation is less pronounced. These findings provide new insights into rAAV transductions in dystrophic muscles, which ultimately may help in the design of more effective clinical trials.

17.
Sci Transl Med ; 6(220): 220ra10, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24452262

RESUMO

Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype 8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology, and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged life span to more than 1 year in the absence of toxicity or a humoral or cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small- and large-animal models, and provide proof of concept for future clinical trials in XLMTM patients.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Animais , Dependovirus/genética , Diafragma , Cães , Vetores Genéticos , Genótipo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Debilidade Muscular , Mutação , Miopatias Congênitas Estruturais/mortalidade , Proteínas Tirosina Fosfatases não Receptoras/genética
18.
Neuromuscul Disord ; 22(12): 1057-68, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22854012

RESUMO

Decorin is a member of the small leucine-rich proteoglycan family and it is a component of the extracellular matrix. Decorin was previously shown to bind different molecules, including myostatin, in a zinc-dependent manner. Here, we investigated in detail the anti-myostatin activity of decorin and fragments thereof. We show that this protein displays in vitro anti-myostatin activities with an IC(50) of 2.3 × 10(-8)M. After intramuscular injection of decorin in dystrophic mdx and γ-sarcoglycan(-/-) mice, we observed a significant increase of the muscle mass and this effect was maximal 18 days after administration. Further, we show that the myostatin-binding site is located in the N-terminal domain of decorin. In fact, a peptide encompassing the 31-71 sequence retains full myostatin binding capacity and intramuscular injection of the peptide induces muscle hypertrophy. The evaluation of three additional peptides suggests a crucial role of the four cysteines within the conserved CX3CXCX6C motif of class I of the small leucine-rich proteoglycans. Altogether, our results show that the N-terminal domain of decorin is sufficient for the binding to myostatin and they underscore the crucial role for this interaction of zinc and the cysteine cluster.


Assuntos
Decorina/farmacologia , Doenças Musculares/tratamento farmacológico , Miostatina/antagonistas & inibidores , Peptídeos/farmacologia , Zinco/metabolismo , Animais , Decorina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Proteoglicanas/farmacologia
19.
Development ; 138(17): 3647-56, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21828093

RESUMO

Distinct cell populations with regenerative capacity have been reported to contribute to myofibres after skeletal muscle injury, including non-satellite cells as well as myogenic satellite cells. However, the relative contribution of these distinct cell types to skeletal muscle repair and homeostasis and the identity of adult muscle stem cells remain unknown. We generated a model for the conditional depletion of satellite cells by expressing a human diphtheria toxin receptor under control of the murine Pax7 locus. Intramuscular injection of diphtheria toxin during muscle homeostasis, or combined with muscle injury caused by myotoxins or exercise, led to a marked loss of muscle tissue and failure to regenerate skeletal muscle. Moreover, the muscle tissue became infiltrated by inflammatory cells and adipocytes. This localised loss of satellite cells was not compensated for endogenously by other cell types, but muscle regeneration was rescued after transplantation of adult Pax7(+) satellite cells alone. These findings indicate that other cell types with regenerative potential depend on the presence of the satellite cell population, and these observations have important implications for myopathic conditions and stem cell-based therapeutic approaches.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Toxina Diftérica/farmacologia , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Fator de Transcrição PAX7/genética , Regeneração/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Macromol Biosci ; 11(5): 590-4, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21337518

RESUMO

Muscle is an important and attractive target for gene therapy. Recent findings have shown that neutral amphiphilic triblock copolymers with a PEO-PPO-PEO arrangement significantly increase muscle transfection as compared to naked DNA. We were interested in evaluating whether reverse Pluronics (PPO-PEO-PPO) also possess transfection properties. Therefore, we measured the in vitro and in vivo transfection activity of 25R2 and 25R4, two copolymers that differ by their hydrophilic/hydrophobic balance. The results show that 25R2 significantly increases the transfection level in muscle compared to naked DNA. Taken together, this work demonstrates that the reverse Pluronic 25R2 possesses interesting properties for in vivo transfection.


Assuntos
DNA/administração & dosagem , Músculo Esquelético/enzimologia , Poloxâmero/química , Polietilenoglicóis/química , Propilenoglicóis/química , Tensoativos/química , Transfecção/métodos , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos , Feminino , Genes Reporter , Células HEK293 , Células Hep G2 , Humanos , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA