Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Brain Behav Immun ; 121: 280-290, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032543

RESUMO

Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (both p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.


Assuntos
Encéfalo , Macaca mulatta , Poli I-C , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Animais , Masculino , Feminino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/imunologia , Gravidez , Encéfalo/metabolismo , Poli I-C/farmacologia , Córtex Pré-Frontal/metabolismo , Inositol/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Creatina/metabolismo , Taurina/metabolismo , Colina/metabolismo , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Estudos Longitudinais
2.
Immunohorizons ; 8(5): 371-383, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780542

RESUMO

Our previous work demonstrated that basophils regulate a suite of malaria phenotypes, including intestinal mastocytosis and permeability, the immune response to infection, gametocytemia, and parasite transmission to the malaria mosquito Anopheles stephensi. Given that activated basophils are primary sources of the regulatory cytokines IL-4 and IL-13, we sought to examine the contributions of these mediators to basophil-dependent phenotypes in malaria. We generated mice with basophils depleted for IL-4 and IL-13 (baso IL-4/IL-13 (-)) and genotype controls (baso IL-4/IL-13 (+)) by crossing mcpt8-Cre and Il4/Il13fl/fl mice and infected them with Plasmodium yoelii yoelii 17XNL. Conditional deletion was associated with ileal mastocytosis and mast cell (MC) activation, increased intestinal permeability, and increased bacterial 16S levels in blood, but it had no effect on neutrophil activation, parasitemia, or transmission to A. stephensi. Increased intestinal permeability in baso IL-4/IL-13 (-) mice was correlated with elevated plasma eotaxin (CCL11), a potent eosinophil chemoattractant, and increased ileal MCs, proinflammatory IL-17A, and the chemokines MIP-1α (CCL3) and MIP-1ß (CCL4). Blood bacterial 16S copies were positively but weakly correlated with plasma proinflammatory cytokines IFN-γ and IL-12p40, suggesting that baso IL-4/IL-13 (-) mice failed to control bacterial translocation into the blood during malaria infection. These observations suggest that basophil-derived IL-4 and IL-13 do not contribute to basophil-dependent regulation of parasite transmission, but these cytokines do orchestrate protection of intestinal barrier integrity after P. yoelii infection. Specifically, basophil-dependent IL-4/IL-13 control MC activation and prevent infection-induced intestinal barrier damage and bacteremia, perhaps via regulation of eosinophils, macrophages, and Th17-mediated inflammation.


Assuntos
Translocação Bacteriana , Basófilos , Interleucina-13 , Interleucina-4 , Malária , Plasmodium yoelii , Animais , Interleucina-13/metabolismo , Basófilos/imunologia , Basófilos/metabolismo , Malária/imunologia , Camundongos , Plasmodium yoelii/imunologia , Interleucina-4/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Camundongos Knockout , Feminino , Anopheles/parasitologia , Anopheles/imunologia , Anopheles/microbiologia
3.
Brain Behav Immun Health ; 34: 100697, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020477

RESUMO

Children on the autism spectrum have been shown to have immune dysregulation that often correlates with behavioral deficits. The role of the post-natal environment in this dysregulation is an area of active investigation. We examined the association between plasma levels of polybrominated diphenyl ether (PBDE) and immune cell function in age-matched autistic children and non-autistic controls. Plasma from children on the autism spectrum (n = 38) and typically developing controls (TD; n = 60) were analyzed for 14 major PBDE congeners. Cytokine/chemokine production was measured in peripheral blood mononuclear cell (PBMC) supernatants with and without ex vivo BDE-49 exposure. Total plasma concentration (∑PBDE14) and individual congener levels were also correlated with T cell function. ∑PBDE14 did not differ between diagnostic groups but correlated with reduced immune function in children on the autism spectrum. In autistic children, IL-2 and IFN-γ production was reduced in association with several individual BDE congeners, especially BDE-49 (p = 0.001). Furthermore, when PBMCs were exposed ex vivo to BDE-49, cells from autistic children produced elevated levels of IL-6, TNF-α, IL-1ß, MIP-1α and MCP-1 (p < 0.05). Therefore, despite similar plasma levels of PBDE, these data suggest that PBMC function was differentially impacted in the context of several PBDE congeners in autistic children relative to TD children where increased body burden of PBDE significantly correlated with a suppressed immune response in autistic children but not TD controls. Further, acute ex vivo exposure of PBMCs to BDE-49 stimulates an elevated cytokine response in AU cases versus a depressed response in TD controls. These data suggest that exposure to the toxicant BDE-49 differentially impacts immune cell function in autistic children relative to TD children providing evidence for an underlying association between susceptibility to PBDE exposure and immune anomalies in children on the autism spectrum.

4.
Immunohorizons ; 6(8): 630-641, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985797

RESUMO

We have recently demonstrated that basophils are protective against intestinal permeability during malaria and contribute to reduced parasite transmission to mosquitoes. Given that IL-18 is an early cytokine/alarmin in malaria and has been shown to activate basophils, we sought to determine the role of the basophil IL-18R in this protective phenotype. To address this, we infected control [IL18r flox/flox or basoIL-18R (+)] mice and mice with basophils lacking the IL-18R [IL18r flox/flox × Basoph8 or basoIL-18R (-)] with Plasmodium yoelii yoelii 17XNL, a nonlethal strain of mouse malaria. Postinfection (PI), intestinal permeability, ileal mastocytosis, bacteremia, and levels of ileal and plasma cytokines and chemokines were measured through 10 d PI. BasoIL-18R (-) mice exhibited greater intestinal permeability relative to basoIL-18R (+) mice, along with increased plasma levels of proinflammatory cytokines at a single time point PI, day 4 PI, a pattern not observed in basoIL-18R (+) mice. Surprisingly, mosquitoes fed on basoIL-18R (-) mice became infected less frequently than mosquitoes fed on basoIL-18R (+) mice, with no difference in gametocytemia, a pattern that was distinct from that observed previously with basophil-depleted mice. These findings suggest that early basophil-dependent protection of the intestinal barrier in malaria is mediated by IL-18, and that basophil IL-18R-dependent signaling differentially regulates the inflammatory response to infection and parasite transmission.


Assuntos
Culicidae , Mucosa Intestinal , Malária , Parasitos , Receptores de Interleucina-18 , Animais , Basófilos , Permeabilidade da Membrana Celular , Culicidae/parasitologia , Citocinas , Imunidade , Interleucina-18 , Mucosa Intestinal/parasitologia , Malária/parasitologia , Camundongos , Receptores de Interleucina-18/metabolismo , Receptores de Interleucina-18/fisiologia
5.
Front Immunol ; 13: 801120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154114

RESUMO

An increase in mast cells (MCs) and MCs mediators has been observed in malaria-associated bacteremia, however, the role of these granulocytes in malarial immunity is poorly understood. Herein, we studied the role of mouse MC protease (Mcpt) 4, an ortholog of human MC chymase, in malaria-induced bacteremia using Mcpt4 knockout (Mcpt4-/-) mice and Mcpt4+/+ C57BL/6J controls, and the non-lethal mouse parasite Plasmodium yoelii yoelii 17XNL. Significantly lower parasitemia was observed in Mcpt4-/- mice compared with Mcpt4+/+ controls by day 10 post infection (PI). Although bacterial 16S DNA levels in blood were not different between groups, increased intestinal permeability to FITC-dextran and altered ileal adherens junction E-cadherin were observed in Mcpt4-/- mice. Relative to infected Mcpt4+/+ mice, ileal MC accumulation in Mcpt4-/- mice occurred two days earlier and IgE levels were higher by days 8-10 PI. Increased levels of circulating myeloperoxidase were observed at 6 and 10 days PI in Mcpt4+/+ but not Mcpt4-/- mice, affirming a role for neutrophil activation that was not predictive of parasitemia or bacterial 16S copies in blood. In contrast, early increased plasma levels of TNF-α, IL-12p40 and IL-3 were observed in Mcpt4-/- mice, while levels of IL-2, IL-10 and MIP1ß (CCL4) were increased over the same period in Mcpt4+/+ mice, suggesting that the host response to infection was skewed toward a type-1 immune response in Mcpt4-/- mice and type-2 response in Mcpt4+/+ mice. Spearman analysis revealed an early (day 4 PI) correlation of Mcpt4-/- parasitemia with TNF-α and IFN-γ, inflammatory cytokines known for their roles in pathogen clearance, a pattern that was observed in Mcpt4+/+ mice much later (day 10 PI). Transmission success of P. y. yoelii 17XNL to Anopheles stephensi was significantly higher from infected Mcpt4-/- mice compared with infected Mcpt4+/+ mice, suggesting that Mcpt4 also impacts transmissibility of sexual stage parasites. Together, these results suggest that early MCs activation and release of Mcpt4 suppresses the host immune response to P. y. yoelii 17XNL, perhaps via degradation of TNF-α and promotion of a type-2 immune response that concordantly protects epithelial barrier integrity, while limiting the systemic response to bacteremia and parasite transmissibility.


Assuntos
Anopheles/parasitologia , Permeabilidade da Membrana Celular/imunologia , Quimases/genética , Quimases/imunologia , Interações Hospedeiro-Parasita/imunologia , Malária/imunologia , Mastócitos/enzimologia , Plasmodium yoelii/imunologia , Animais , Feminino , Íleo/citologia , Íleo/patologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
6.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32958528

RESUMO

Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. The anti-inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) and MCP-1/CCL2 were detected early after P. yoeliiyoelii 17XNL infection. This was followed by the appearance of IL-9 and IL-13, cytokines known for their roles in mast cell activation and growth-enhancing activity as well as IgE production. Later increases in circulating IgE, which can induce mast cell degranulation, as well as Mcpt-1 and Mcpt-4, were observed concurrently with bacteremia and increased intestinal permeability. These results suggest that P. yoeliiyoelii 17XNL infection induces the production of early cytokines that activate mast cells and drive IgE production, followed by elevated IgE, IL-9, and IL-13 that maintain and enhance mast cell activation while disrupting the protease/antiprotease balance in the intestine, contributing to epithelial damage and increased permeability.


Assuntos
Bacteriemia/imunologia , Citocinas/sangue , Malária/imunologia , Mastócitos/metabolismo , Plasmodium yoelii/imunologia , Animais , Bacteriemia/parasitologia , Quimiocina CCL2/sangue , Quimases/sangue , Feminino , Íleo/citologia , Íleo/metabolismo , Íleo/parasitologia , Imunoglobulina E/sangue , Inflamação/sangue , Interleucina-10/sangue , Interleucina-13/metabolismo , Interleucina-4/sangue , Interleucina-6/sangue , Interleucina-9/sangue , Leucócitos/citologia , Malária/sangue , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , RNA Ribossômico 16S/sangue , RNA Ribossômico 16S/genética
7.
J Biomed Mater Res A ; 108(5): 1186-1202, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031743

RESUMO

In pursuit of a preventive therapeutic for maternal autoantibody-related (MAR) autism, we assessed the toxicity, biodistribution, and clearance of a MAR specific peptide-functionalized dextran iron oxide nanoparticle system in pregnant murine dams. We previously synthesized ~15 nm citrate-coated dextran iron oxide nanoparticles (DIONPs), surface-modified with polyethylene glycol and MAR peptides to produce systems for nanoparticle-based autoantibody reception and entrapments (SNAREs). First, we investigated their immunogenicity and MAR lactate dehydrogenase B antibody uptake in murine serum in vitro. To assess biodistribution and toxicity, as well as systemic effects, we performed in vivo clinical and post mortem pathological evaluations. We observed minimal production of inflammatory cytokines-interleukin 10 (IL-10) and IL-12 following in vitro exposure of macrophages to SNAREs. We established the maximum tolerated dose of SNAREs to be 150 mg/kg at which deposition of iron was evident in the liver and lungs by histology and magnetic resonance imaging but no concurrent evidence of liver toxicity or lung infarction was detected. Further, SNAREs exhibited slower clearance from the maternal blood in pregnant dams compared to DIONPs based on serum total iron concentration. These findings demonstrated that the SNAREs have a prolonged presence in the blood and are safe for use in pregnant mice as evidenced by no associated organ damage, failure, inflammation, and fetal mortality. Determination of the MTD dose sets the basis for future studies investigating the efficacy of our nanoparticle formulation in a MAR autism mouse model.


Assuntos
Dextranos/toxicidade , Epitopos/toxicidade , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Animais , Células Cultivadas , Citocinas/análise , Dextranos/análise , Dextranos/farmacocinética , Epitopos/análise , Feminino , Macrófagos/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/análise , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Distribuição Tecidual
8.
Brain Behav Immun ; 84: 200-208, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31812776

RESUMO

Autism spectrum disorder (ASD) is an important health issue and affects 1 in 59 children in the US. Prior studies determined that maternal autoantibody related (MAR) autism is thought to be associated with ~23% of ASD cases. We previously identified seven MAR-specific autoantigens including CRMP1, CRMP2, GDA, LDHA, LDHB, STIP1, and YBX1. We subsequently described the epitope peptide sequences recognized by maternal autoantibodies for each of the seven ASD-specific autoantigens. The aim of the current study was to expand upon our previous work and identify additional antigens recognized by the ASD-specific maternal autoantibodies, as well as to map the unique ASD-specific epitopes using microarray technology. Fetal Rhesus macaque brain tissues were separated by molecular weight and a fraction containing bands between 37 and 45 kDa was analyzed using 2-D gel electrophoresis, followed by peptide mass mapping using MALDI-TOF MS and TOF/TOF tandem MS/MS. Using this methodology, Neuron specific enolase (NSE) was identified as a target autoantigen and selected for epitope mapping. The full NSE sequence was translated into 15-mer peptides with an overlap of 14 amino acids onto microarray slides and probed with maternal plasma from mothers with an ASD child and from mothers with a Typically Developing child (TD) (ASD = 27 and TD = 21). The resulting data were analyzed by T-test. We found 16 ASD-specific NSE-peptide sequences for which four sequences were statistically significant (p < 0.05) using both the t-test and SAM t-test: DVAASEFYRDGKYDL (p = 0.047; SAM score 1.49), IEDPFDQDDWAAWSK (p = 0.049; SAM score 1.49), ERLAKYNQLMRIEEE (p = 0.045; SAM score 1.57), and RLAKYNQLMRIEEEL (p = 0.017; SAM score 1.82). We further identified 5 sequences that were recognized by both ASD and TD antibodies suggesting a large immunodominant epitope (DYPVVSIEDPFDQDDWAAW). While maternal autoantibodies against the NSE protein are present both in mothers with ASD and mothers of TD children, there are several ASD-specific epitopes that can potentially be used as MAR ASD biomarkers. Further, studies including analysis of NSE as a target protein in combination with the previously identified MAR ASD autoantigens are currently underway.


Assuntos
Transtorno do Espectro Autista , Biomarcadores , Peptídeos , Fosfopiruvato Hidratase , Animais , Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/diagnóstico , Autoanticorpos , Autoantígenos/análise , Biomarcadores/sangue , Criança , Mapeamento de Epitopos , Feminino , Humanos , Macaca mulatta , Peptídeos/análise , Fosfopiruvato Hidratase/sangue , Fosfopiruvato Hidratase/imunologia , Espectrometria de Massas em Tandem
9.
Nanomedicine ; 21: 102067, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31349087

RESUMO

Recently, the causative agents of Maternal Autoantibody-Related (MAR) autism, pathological autoantibodies and their epitopic targets (e.g. lactate dehydrogenase B [LDH B] peptide), have been identified. Herein, we report on the development of Systems for Nanoparticle-based Autoantibody Reception and Entrapment (SNAREs), which we hypothesized could scavenge disease-propagating MAR autoantibodies from the maternal blood. To demonstrate this functionality, we synthesized 15 nm dextran iron oxide nanoparticles surface-modified with citric acid, methoxy PEG(10 kDa) amine, and LDH B peptide (33.8 µg peptide/cm2). In vitro, we demonstrated significantly lower macrophage uptake for SNAREs compared to control NPs. The hallmark result of this study was the efficacy of the SNAREs to remove 90% of LDH B autoantibody from patient-derived serum. Further, in vitro cytotoxicity testing and a maximal tolerated dose study in mice demonstrated the safety of the SNARE formulation. This work establishes the feasibility of SNAREs as the first-ever prophylactic against MAR autism.


Assuntos
Transtorno Autístico/tratamento farmacológico , Autoanticorpos , Nanopartículas , Peptídeos , Animais , Transtorno Autístico/sangue , Transtorno Autístico/imunologia , Transtorno Autístico/patologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Peptídeos/química , Peptídeos/farmacologia , Células RAW 264.7
10.
Autism Res ; 10(1): 89-98, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27312731

RESUMO

Approximately 23% of mothers of children with autism spectrum disorder (ASD) produce specific patterns of autoantibodies to fetal brain proteins that have been detected in only 1% of mothers of typically developing children. The biological mechanisms underlying the development of ASD-specific maternal autoantibodies are poorly understood. We sought to determine whether ASD-specific maternal autoantibodies identified postnatally were associated with metabolic conditions (MCs) during gestation. Participants were 227 mothers of 2-5 year old children with confirmed ASD, enrolled in CHARGE (Childhood Autism Risk from Genetics and the Environment) between January 2003 and April 2008, and from whom blood samples were collected and analyzed for anti-fetal brain autoantibodies (Ab+). MCs included diabetes, hypertensive disorders, and prepregnancy obesity or overweight, ascertained from medical records or structured telephone interviews. Log-linear regression models were performed to estimate prevalence ratios and 95% confidence intervals (CI) based on robust standard errors. Fifty-six (25%) mothers were Ab+. Ab+ prevalence was higher among mothers with diabetes, hypertensive disorders, or overweight compared to healthy mothers, but differences were not statistically significant. In a subset of 145 mothers whose children exhibited severe ASD (31 Ab+), those diagnosed with type 2 or gestational diabetes were 2.7-fold more likely to be Ab+ (95% CI 1.1, 6.6), controlling for delivery payer and smoking. Gestational diabetes specifically was associated with a 3.2-fold increased Ab+ prevalence (95% CI 1.2, 8.6). In this exploratory study, mothers whose children had severe ASD and who experienced diabetes were more likely to have anti-fetal brain autoantibodies 2-5 years later. Autism Res 2017, 10: 89-98. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/imunologia , Autoanticorpos/sangue , Encéfalo/embriologia , Proteínas Fetais/imunologia , Mães , Adulto , Transtorno do Espectro Autista/diagnóstico , Autoanticorpos/imunologia , Encéfalo/imunologia , California , Pré-Escolar , Diabetes Gestacional/sangue , Diabetes Gestacional/metabolismo , Feminino , Humanos , Hipertensão/sangue , Hipertensão/imunologia , Masculino , Obesidade/sangue , Obesidade/imunologia , Sobrepeso/sangue , Sobrepeso/imunologia , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/imunologia , Prevalência , Risco
11.
Biol Psychiatry ; 81(5): 434-441, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26493496

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is characterized by social communication deficits and restricted, repetitive patterns of behavior. Varied immunological findings have been reported in children with ASD. To address the question of heterogeneity in immune responses, we sought to examine the diversity of immune profiles within a representative cohort of boys with ASD. METHODS: Peripheral blood mononuclear cells from male children with ASD (n = 50) and from typically developing age-matched male control subjects (n = 16) were stimulated with either lipopolysaccharide or phytohemagglutinin. Cytokine production was assessed after stimulation. The ASD study population was clustered into subgroups based on immune responses and assessed for behavioral outcomes. RESULTS: Children with ASD who had a proinflammatory profile based on lipopolysaccharide stimulation were more developmentally impaired as assessed by the Mullen Scales of Early Learning. They also had greater impairments in social affect as measured by the Autism Diagnostic Observation Schedule. These children also displayed more frequent sleep disturbances and episodes of aggression. Similarly, children with ASD and a more activated T cell cytokine profile after phytohemagglutinin stimulation were more developmentally impaired as measured by the Mullen Scales of Early Learning. CONCLUSIONS: Children with ASD may be phenotypically characterized based upon their immune profile. Those showing either an innate proinflammatory response or increased T cell activation/skewing display a more impaired behavioral profile than children with noninflamed or non-T cell activated immune profiles. These data suggest that there may be several possible immune subphenotypes within the ASD population that correlate with more severe behavioral impairments.


Assuntos
Transtorno do Espectro Autista/imunologia , Citocinas/imunologia , Endofenótipos , Inflamação/imunologia , Quimiocina CCL2/imunologia , Pré-Escolar , Humanos , Inflamação/induzido quimicamente , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-13/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos , Masculino , Fito-Hemaglutininas
12.
Brain Behav Immun ; 63: 60-70, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27876552

RESUMO

Infection during pregnancy can lead to activation of the maternal immune system and has been associated with an increased risk of having an offspring later diagnosed with a neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD) or schizophrenia (SZ). Most maternal immune activation (MIA) studies to date have been in rodents and usually involve the use of lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). However, since NDD are based on behavioral changes, a model of MIA in non-human primates could potentially provide data that helps illuminate complex behavioral and immune outputs in human NDD. In this study twenty-one pregnant rhesus macaques were either given three injections over 72 hours of poly I:C-LC, a double stranded RNA analog (viral mimic), or saline as a control. Injections were given near the end of the first trimester or near the end of the second trimester to determine if there were differences in immune output due to the timing of MIA.An additional three non-treated animals were used as controls. The offspring were followed until 4 years of age, with blood collected at the end of their first (year 1) and fourth (year 4) years to assess dynamic cellular immune function. Induced responses from peripheral immune cells were measured using multiplex assays.At one year of age, MIA exposed offspring displayed elevated production of innate inflammatory cytokines including: interleukin (IL)-1ß, IL-6, IL-12p40, and tumor necrosis factor (TNF)α at baseline and following stimulation. At four years of age, the MIA exposed offspring continued to display elevated IL-1ß, and there was also a pattern of an increased production of T-cell helper type (TH)-2 cytokines, IL-4 and IL-13. Throughout this time period, the offspring of MIA treated dams exhibited altered behavioral phenotypes including increased stereotyped behaviors. During the first two years, stereotyped behaviors were associated with innate cytokine production. Self-directed behaviors were associated with TH2 cytokine production at year 4. Data from this study suggests long-term behavioral and immune activation was present in offspring following MIA. This novel non-human primate model of MIA may provide a relevant clinically translational model to help further elucidate the role between immune dysfunction and complex behavioral outputs following MIA.


Assuntos
Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Comportamento Animal/fisiologia , Citocinas , Modelos Animais de Doenças , Feminino , Sistema Imunitário/efeitos dos fármacos , Interleucina-13/imunologia , Interleucina-4/imunologia , Macaca mulatta , Atividade Motora/efeitos dos fármacos , Poli I-C/farmacologia , Gravidez , Complicações Infecciosas na Gravidez , Comportamento Estereotipado , Células Th2/imunologia
13.
Biomicrofluidics ; 9(4): 044115, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26339315

RESUMO

Monocytes represent a class of immune cells that play a key role in the innate and adaptive immune response against infections. One mechanism employed by monocytes for sensing foreign antigens is via toll-like receptors (TLRs)-transmembrane proteins that distinguish classes of foreign pathogens, for example, bacteria (TLR4, 5, and 9) vs. fungi (TLR2) vs. viruses (TLR3, 7, and 8). Binding of antigens activates a signaling cascade through TLR receptors that culminate in secretion of inflammatory cytokines. Detection of these cytokines can provide valuable clinical data for drug developers and disease investigations, but this usually requires a large sample volume and can be technically inefficient with traditional techniques such as flow cytometry, enzyme-linked immunosorbent assay, or luminex. This paper describes an approach whereby antibody arrays for capturing cells and secreted cytokines are encapsulated within a microfluidic device that can be reconfigured to operate in serial or parallel mode. In serial mode, the device represents one long channel that may be perfused with a small volume of minimally processed blood. Once monocytes are captured onto antibody spots imprinted into the floor of the device, the straight channel is reconfigured to form nine individually perfusable chambers. To prove this concept, the microfluidic platform was used to capture monocytes from minimally processed human blood in serial mode and then to stimulate monocytes with different TLR agonists in parallel mode. Three cytokines, tumor necrosis factor-α, interleukin (IL)-6, and IL-10, were detected using anti-cytokine antibody arrays integrated into each of the six chambers. We foresee further use of this device in applications such as pediatric immunology or drug/vaccine testing where it is important to balance small sample volume with the need for high information content.

14.
Am J Med Genet A ; 158A(10): 2473-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22903889

RESUMO

The relative risk of immune-mediated disorders (IMDs) among women carriers of premutation alleles is estimated by a survey for IMDs among 344 carrier women (age 19-81 years; mean 46.35 and SD 12.60) and 72 controls (age 18-87 years; mean 52.40 and SD 15.40). One hundred fifty four (44.77%) women carrier had at least one IMD, as did 20 controls (27.78%). Among women carriers, autoimmune thyroid disorder was the most common (24.4%), then fibromyalgia (10.2%), irritable bowel syndrome (IBS; 9.9%), Raynaud's phenomenon (7.6%), rheumatoid arthritis (RA; 3.8%), Sjögren syndrome (2.6%), systemic lupus erythematosus (SLE; 2.03%), multiple sclerosis (1.74%). Of 55 carriers age 40 or older with FXTAS, 72.73% had at least one IMD, compared to 46.54% of those without FXTAS (n = 159), and 31.58% of controls (n = 57). The estimated odds ratio (OR) for IMD is 2.6 (95% CI 1.2-5.6, P = 0.015) for women with FXTAS relative to those without FXTAS; the likelihood of IMD in carriers without or with FXTAS was also significantly higher than for controls (OR 2.1, 95% CI 1.1-4.2, P = 0.034; OR 5.5, 95% CI 2.4-12.5, P < 0.001, respectively). Similarly, the odds of having an IMD among carriers with FXPOI is about 2.4 times higher when compared to carriers without FXPOI (95% CI 1.1-5.0; P = 0.021). The likelihood of IMD in carriers with or without FXPOI is greater (OR 2.4, 95% CI 1.1-5.0; P = 0.021) compared to that of controls.


Assuntos
Alelos , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/complicações , Heterozigoto , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ataxia/genética , Feminino , Síndrome do Cromossomo X Frágil/epidemiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Humanos , Pessoa de Meia-Idade , Tremor/genética , Expansão das Repetições de Trinucleotídeos , Adulto Jovem
15.
Hepatology ; 52(3): 987-98, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20568301

RESUMO

UNLABELLED: Our understanding of primary biliary cirrhosis (PBC) has been significantly enhanced by the rigorous dissection of the multilineage T and B cell response against the immunodominant mitochondrial autoantigen, the E2 component of the pyruvate dehydrogenase complex (PDC-E2). PDC-E2 is a ubiquitous protein present in mitochondria of nucleated cells. However, the damage of PBC is confined to small biliary epithelial cells (BECs). We have previously demonstrated that BECs translocate immunologically intact PDC-E2 to apoptotic bodies and create an apotope. To define the significance of this observation, we have studied the ability of biliary or control epithelial apotopes to induce cytokine secretion from mature monocyte-derived macrophages (MDMphis) from either patients with PBC or controls in the presence or absence of anti-mitochondrial antibodies (AMAs). We demonstrate that there is intense inflammatory cytokine production in the presence of the unique triad of BEC apotopes, macrophages from patients with PBC, and AMAs. The cytokine secretion is inhibited by anti-CD16 and is not due to differences in apotope uptake. Moreover, MDMphis from PBC patients cultured with BEC apoptotic bodies in the presence of AMAs markedly increase tumor necrosis factor-related apoptosis-inducing ligand expression. CONCLUSION: These results provide a mechanism for the biliary specificity of PBC, the recurrence of disease after liver transplantation, and the success of ursodiol in treatment. They further emphasize the critical role of the innate immune system in the perpetuation of this autoimmune disease.


Assuntos
Anticorpos Anti-Idiotípicos/fisiologia , Apoptossomas/fisiologia , Células Epiteliais/fisiologia , Imunidade Inata/fisiologia , Cirrose Hepática Biliar/fisiopatologia , Mitocôndrias/imunologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Linfócitos B/patologia , Estudos de Casos e Controles , Células Cultivadas , Colagogos e Coleréticos/farmacologia , Colagogos e Coleréticos/uso terapêutico , Citocinas/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Pessoa de Meia-Idade , Proteínas Mitocondriais/imunologia , Recidiva , Linfócitos T/patologia , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico
16.
Ann Neurol ; 66(5): 663-70, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19938160

RESUMO

OBJECTIVE: Chorioamnionitis is associated with increased risk for cerebral palsy (CP) in term infants. A functional polymorphism in the interleukin-6 (IL-6) gene has been implicated in newborn brain injury. We studied whether the IL-6 -174 G/C polymorphism confers increased risk for CP in term infants. METHODS: This population-based case-control study included 334,333 live-born infants born at >or=36 weeks gestation within Kaiser Permanente Medical Care Program from 1991 to 2002. Case patients (n = 250) were identified from electronic records and confirmed by chart review, and comprised all infants with spastic or dyskinetic CP not caused by developmental abnormalities who had a neonatal blood specimen available for study. Control patients (n = 305) were randomly selected from the study population. RESULTS: Compared with genotype GG, the less common CC genotype was associated with increased risk for overall CP (odds ratio [OR], 2.6; 95% confidence interval [CI], 1.5-4.6), quadriparetic CP (OR, 4.1; 95% CI, 1.8-9.3), and hemiparetic CP (OR, 2.7; 95% CI, 1.3-5.7), after controlling for race. The C allele conferred increased risk for CP in both recessive and additive genetic models. In multivariate analysis controlling for race, independent risk factors for CP included CC genotype compared with GG (OR, 2.4; 95% CI, 1.3-4.4), clinical chorioamnionitis (OR, 4.6; 95% CI, 2.1-10.4), maternal age >or= 35 (OR, 2.6; 95% CI, 1.6-4.1), and male sex (OR, 1.6; 95% CI, 1.1-2.4). INTERPRETATION: Our data suggest that a functional polymorphism in the IL-6 gene is a risk factor for CP among term and near-term infants.


Assuntos
Paralisia Cerebral/genética , Interleucina-6/genética , Adolescente , Adulto , Estudos de Casos e Controles , Paralisia Cerebral/diagnóstico , Estudos de Coortes , Feminino , Marcadores Genéticos/genética , Genótipo , Humanos , Recém-Nascido , Masculino , Polimorfismo Genético/genética , Fatores de Risco , Adulto Jovem
17.
Hepatology ; 49(3): 871-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19185000

RESUMO

UNLABELLED: Primary biliary cirrhosis (PBC) is characterized by antimitochondrial antibodies (AMAs), directed to the E2 component of the pyruvate dehydrogenase complex (PDC-E2). Notwithstanding the presence of mitochondria in virtually all nucleated cells, the destruction in PBC is limited to small intrahepatic bile ducts. The reasons for this tissue specificity remain unknown, although biliary epithelial cells (BECs) uniquely preserve the PDC-E2 epitope following apoptosis. Notably, PBC recurs in an allogeneic transplanted liver, suggesting generic rather than host PBC-specific susceptibility of BEC. We used cultured human intrahepatic BECs (HIBECs) and other well-characterized cell lines, including, HeLa, CaCo-2 cells, and nontransformed human keratinocytes and bronchial epithelial cells, to determine the integrity and specific localization of PDC-E2 during induced apoptosis. All cell lines, both before and after apoptosis, were tested with sera from patients with PBC (n = 30), other autoimmune liver and rheumatic diseases (n = 20), and healthy individuals (n = 20) as well as with a mouse monoclonal antibody against PDC-E2 and AMA with an immunoglobulin A isotype. PDC-E2 was found to localize unmodified within apoptotic blebs of HIBECs, but not within blebs of various other cell lineages studied. The fact that AMA-containing sera reacted with PDC-E2 on apoptotic BECs without a requirement for permeabilization suggests that the autoantigen is accessible to the immune system during apoptosis. CONCLUSION: Our data indicate that the tissue (cholangiocyte) specificity of the autoimmune injury in PBC is a consequence of the unique characteristics of HIBECs during apoptosis and can be explained by exposure to the immune system of intact immunoreactive PDC-E2 within apoptotic blebs.


Assuntos
Apoptose , Autoantígenos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Células Epiteliais/patologia , Cirrose Hepática Biliar/patologia , Proteínas Mitocondriais/metabolismo , Anticorpos/imunologia , Especificidade de Anticorpos , Autoantígenos/imunologia , Autoimunidade/imunologia , Ductos Biliares Intra-Hepáticos/metabolismo , Células CACO-2 , Linhagem Celular , Células Cultivadas , Células Epiteliais/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Células HeLa , Humanos , Queratinócitos , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/metabolismo , Mitocôndrias/imunologia
18.
Am J Biochem Biotechnol ; 4(2): 114-120, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-27688738

RESUMO

Interleukin-23 (IL-23) is a survival factor for a newly described population of T lymphocytes, namely Th-17 cells, that secrete IL-17, tumor necrosis factor- alpha (TNFα) and IL-6. It has been shown that Th-17 cells are a pathogenic T cell subset involved in autoimmune and chronic inflammatory diseases. Based on the increasing evidence of immune dysfunction in autism, including possible autoimmune and inflammatory processes, we hypothesized that Th-17 cells, a T cell lineage that has not been previously examined in this disorder, may be altered in autism. To assess the potential role, if any, of Th-17 cells in autism, we analyzed plasma samples obtained from children ranging in age from 2-5 years with a diagnosis of autism and age-matched typically developing controls for the presence of IL-17 and IL-23 cytokines. Plasma samples from 40 children with autism including 20 children with a regressive form of autism, 20 with early onset and no regression and 20 typically developing age-matched control children were analyzed for IL-17 and IL-23, under the hypothesis that altered number and function of Th-17 cells would directly correlate with altered levels of IL-17 and IL-23 in the plasma. In this study, we were able to demonstrate that IL-23 cytokine levels were significantly different in children with autism compared with age-matched controls, a finding primarily driven by children with early onset autism. In contrast, there were no statistical differences in IL-17 levels autism compared with age-matched typically developing controls. This is the first study to report altered IL-23 production in autism. The decreased plasma IL-23 production observed in children with autism warrants further research as to its affect on the generation and survival of Th-17 cells, a subset important in neuroinflammatory conditions that may include autism.

19.
J Autoimmun ; 27(4): 232-41, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17222534

RESUMO

Primary biliary cirrhosis (PBC) is characterized by loss of tolerance against ubiquitously expressed mitochondrial autoantigens followed by biliary and salivary gland epithelial cell (BEC and SGEC) destruction by autoreactive T cells. It is unclear why BECs and SGECs are targeted. Previous work demonstrated that the reduced form of the major PBC autoantigen predominated in apoptotic BECs and SGECs as opposed to an oxidized form in other apoptotic cells. This led to the hypothesis that presentation of novel self-peptides from phagocytosed apoptotic BECs might contribute to BEC targeting by autoreactive T cells. The effect of autoantigen redox status on self-peptide formation was examined along with the phagocytic ability of BECs. Oxidation of PBC autoantigens first was shown to be due to protein S-glutathionylation of lipoyllysine residues. Absence of protein S-glutathionylation generated novel self-peptides and affected T cell recognition of a lipoyllysine containing peptide. Liver biopsy staining revealed BEC phagocytosis of apoptotic BECs (3.74+/-2.90% of BEC) was present in PBC (7 of 7 cases) but not in normal livers (0 of 3). BECs have the ability to present novel mitochondrial self-peptides derived from phagocytosed apoptotic BECs. Apoptotic cell phagocytosis by non-professional phagocytes may influence the tissue specificity of autoimmune diseases.


Assuntos
Apoptose/imunologia , Cirrose Hepática Biliar/imunologia , Fagocitose/imunologia , Linfócitos T/imunologia , Animais , Apoptose/genética , Autoantígenos/imunologia , Autoantígenos/metabolismo , Catepsina B/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Glutationa/metabolismo , Células HeLa , Humanos , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Lisina/análogos & derivados , Lisina/química , Camundongos , Oxirredução , Peptídeo Hidrolases/metabolismo , Ratos , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química
20.
Hepatology ; 38(4): 1018-25, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14512889

RESUMO

Previous studies have suggested that increased nitric oxide (NO)-mediated products are found in the livers of subjects with primary biliary cirrhosis (PBC), but the mechanisms involved remain enigmatic. We took advantage of immunohistochemistry and several unique monoclonal antibodies to study inflammatory cells responsible for the generation of NO, the enzymes responsible for NO production, the expression of 3-nitrotyrosine, and the presence of CD68(+) and/or myeloperoxidase (MPO)(+) cells. We examined a total of 113 liver specimens, including 64 with PBC, 19 with primary sclerosing cholangitis (PSC), 6 with non-A, non-B hepatitis, 6 with alcoholic liver disease, 4 with cryptogenic cirrhosis, 4 with biliary atresia, and 10 normal subjects. Twenty-two percent of PBC had elevated expression of 3-nitrotyrosine in their bile duct epithelial cells (BECs) (P =.0316). Furthermore, the BECs in PBC also demonstrated apoptotic changes. MPO-positive inflammatory cells were also noted adjacent to the basement membrane. In contrast, the liver of normal subjects showed few apoptotic changes in the bile ducts, with no evidence of MPO staining in the portal area. Furthermore, sections from livers of subjects with stage I or stage II PBC demonstrated significantly increased inflammatory cell infiltration (P =.0064) and elevated 3-nitrotyrosine expression in BECs (P =.0246) compared with stage III and IV. The presence of 3-nitrotyrosine was closely associated with infiltrating CD68- and/or MPO-positive cells. There was also a stage-associated difference in the presence of bile duct infiltrating cells and 3-nitrotyrosine in PBC with an increase dominant in early stage disease. In conclusion, NO and reactive oxygen species, collectively determined as 3-nitrotyrosine, are associated with bile duct destruction in PBC and are particularly prevalent in early stage disease.


Assuntos
Ductos Biliares/patologia , Cirrose Hepática Biliar/patologia , Macrófagos/fisiologia , Neutrófilos/fisiologia , Óxido Nítrico/fisiologia , Peroxidase/análise , Tirosina/análogos & derivados , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Apoptose , Ductos Biliares/química , Células Epiteliais/química , Humanos , Macrófagos/enzimologia , Neutrófilos/enzimologia , Óxido Nítrico Sintase/análise , Óxido Nítrico Sintase Tipo II , Tirosina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA