Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Micromachines (Basel) ; 13(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35630206

RESUMO

The cancer xenograft model in which human cancer cells are implanted in a mouse is one of the most used preclinical models to test the efficacy of novel cancer drugs. However, the model is imperfect; animal models are ethically burdened, and the imperfect efficacy predictions contribute to high clinical attrition of novel drugs. If microfluidic cancer-on-chip models could recapitulate key elements of the xenograft model, then these models could substitute the xenograft model and subsequently surpass the xenograft model by reducing variation, increasing sensitivity and scale, and adding human factors. Here, we exposed HCT116 colorectal cancer spheroids to dynamic, in vivo-like, concentrations of oxaliplatin, including a 5 day drug-free period, on-chip. Growth inhibition on-chip was comparable to existing xenograft studies. Furthermore, immunohistochemistry showed a similar response in proliferation and apoptosis markers. While small volume changes in xenografts are hard to detect, in the chip-system, we could observe a temporary growth delay. Lastly, histopathology and a pharmacodynamic model showed that the cancer spheroid-on-chip was representative of the proliferating outer part of a HCT116 xenograft, thereby capturing the major driver of the drug response of the xenograft. Hence, the cancer-on-chip model recapitulated the response of HCT116 xenografts to oxaliplatin and provided additional drug efficacy information.

2.
EBioMedicine ; 66: 103303, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33773183

RESUMO

Organs-on-chips are in vitro models in which human tissues are cultured in microfluidic compartments with a controlled, dynamic micro-environment. Specific organs-on-chips are being developed to mimic human tumors, but the validation of such 'cancer-on-chip' models for use in drug development is hampered by the complexity and variability of human tumors. An important step towards validation of cancer-on-chip technology could be to first mimic cancer xenograft models, which share multiple characteristics with human cancers but are significantly less complex. Here we review the relevant biological characteristics of a xenograft tumor and show that organ-on-chip technology is capable of mimicking many of these aspects. Actual comparisons between on-chip tumor growth and xenografts are promising but also demonstrate that further development and empirical validation is still needed. Validation of cancer-on-chip models to xenografts would not only represent an important milestone towards acceptance of cancer-on-chip technology, but could also improve drug discovery, personalized cancer medicine, and reduce animal testing.


Assuntos
Biomimética , Modelos Animais de Doenças , Dispositivos Lab-On-A-Chip , Neoplasias/patologia , Animais , Biomimética/métodos , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Xenoenxertos , Humanos , Camundongos , Técnicas Analíticas Microfluídicas , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Lab Chip ; 20(17): 3167-3178, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32729598

RESUMO

We present a microfluidic device to expose cancer cells to a dynamic, in vivo-like concentration profile of a drug, and quantify efficacy on-chip. About 30% of cancer patients receive drug therapy. In conventional cell culture experiments drug efficacy is tested under static concentrations, e.g. 1 µM for 48 hours, whereas in vivo, drug concentration follows a pharmacokinetic profile with an initial peak and a decline over time. With the rise of microfluidic cell culture models, including organs-on-chips, there are opportunities to more realistically mimic in vivo-like concentrations. Our microfluidic device contains a cell culture chamber and a drug-dosing channel separated by a transparent membrane, to allow for shear stress-free drug exposure and label-free growth quantification. Dynamic drug concentration profiles in the cell culture chamber were controlled by continuously flowing controlled concentrations of drug in the dosing channel. The control over drug concentrations in the cell culture chambers was validated with fluorescence experiments and numerical simulations. Exposure of HCT116 colorectal cancer cells to static concentrations of the clinically used drug oxaliplatin resulted in a sensible dose-effect curve. Dynamic, in vivo-like drug exposure also led to statistically significant lower growth compared to untreated control. Continuous exposure to the average concentration of the in vivo-like exposure seems more effective than exposure to the peak concentration (Cmax) only. We expect that our microfluidic system will improve efficacy prediction of in vitro models, including organs-on-chips, and may lead to future clinical optimization of drug administration schedules.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Neoplasias Colorretais/tratamento farmacológico , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica
4.
Lab Chip ; 19(2): 198-205, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30506070

RESUMO

Organs-on-chips are microfluidic systems with controlled, dynamic microenvironments in which cultured cells exhibit functions that emulate organ-level physiology. They can in principle be 'personalised' to reflect individual physiology, for example by including blood samples, primary human tissue, and cells derived from induced pluripotent stem cell-derived cells, as well as by tuning key physico-chemical parameters of the cell culture microenvironment based on personal health data. The personalised nature of such systems, combined with physiologically relevant read-outs, provides new opportunities for person-specific assessment of drug efficacy and safety, as well as personalised strategies for disease prevention and treatment; together, this is known as 'precision medicine'. There are multiple reports of how to personalise organs-on-chips, with examples including airway-on-a-chip systems containing primary patient alveolar epithelial cells, vessels-on-chips with shapes based on personal biomedical imaging data and lung-on-a-chip systems that can be exposed to various regimes of cigarette smoking. In addition, multi-organ chip systems even allow the systematic and dynamic integration of more complex combinations of personalised cell culture parameters. Current personalised organs-on-chips have not yet been used for precision medicine as such. The major challenges that affect the implementation of personalised organs-on-chips in precision medicine are related to obtaining access to personal samples and corresponding health data, as well as to obtaining data on patient outcomes that can confirm the predictive value of personalised organs-on-chips. We argue here that involving all biomedical stakeholders from clinicians and patients to pharmaceutical companies will be integral to transition personalised organs-on-chips to precision medicine.


Assuntos
Dispositivos Lab-On-A-Chip , Medicina de Precisão/instrumentação , Análise Serial de Tecidos/instrumentação , Desenho de Equipamento , Humanos
5.
Sci Rep ; 8(1): 3714, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487332

RESUMO

We present a microfluidic chip that enables electrofusion of cells in microdroplets, with exchange of nuclear components. It is shown, to our knowledge for the first time, electrofusion of two HL60 cells, inside a microdroplet. This is the crucial intermediate step for controlled hybridoma formation where a B cell is electrofused with a myeloma cell. We use a microfluidic device consisting of a microchannel structure in PDMS bonded to a glass substrate through which droplets with two differently stained HL60 cells are transported. An array of six recessed platinum electrode pairs is used for electrofusion. When applying six voltage pulses of 2-3 V, the membrane electrical field is about 1 MV/cm for 1 ms. This results in electrofusion of these cells with a fusion yield of around 5%. The operation with individual cell pairs, the appreciable efficiency and the potential to operate in high-throughput (up to 500 cells sec-1) makes the microdroplet fusion technology a promising platform for cell electrofusion, which has the potential to compete with the conventional methods. Besides, this platform is not restricted to cell fusion but is also applicable to various other cell-based assays such as single cell analysis and differentiation assays.


Assuntos
Fusão Celular/métodos , Linfócitos B/citologia , Células HL-60 , Humanos , Hibridomas/citologia , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos
6.
Adv Healthc Mater ; 6(3)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27973710

RESUMO

Modular bioinks based on single cell microgels within distinct injectable prepolymers enable uncoupling of biomaterials' micro- and macroenvironments. These inks allow biofabrication of 3D constructs that recapitulate the multiscale modular design of native tissues with a single cell resolution. This approach represents a major step forward in endowing engineered constructs with the multifunctionality that underlies the behavior of native tissues.


Assuntos
Condrócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco , Engenharia Tecidual , Animais , Bovinos , Condrócitos/citologia , Humanos , Células-Tronco Mesenquimais/citologia
7.
Macromol Biosci ; 16(10): 1524-1532, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27440382

RESUMO

Cell-laden micrometer-sized hydrogels (microgels) hold great promise for improving high throughput ex-vivo drug screening and engineering biomimetic tissues. Microfluidics is a powerful tool to produce microgels. However, only a limited amount of biomaterials have been reported to be compatible with on-chip microgel formation. Moreover, these biomaterials are often associated with mechanical instability, cytotoxicity, and cellular senescence. To resolve this challenge, dextran-tyramine has been explored as a novel biomaterial for on-chip microgel formation. In particular, dextran-tyramine is compared with two commonly used biomaterials, namely, polyethylene-glycol diacrylate (PEGDA) and alginate, which crosslink through enzymatic reaction, UV polymerization, and ionic interaction, respectively. Human mesenchymal stem cells (hMSCs) encapsulated in dextran-tyramine microgels demonstrate significantly higher (95%) survival as compared to alginate (81%) and PEGDA (69%). Long-term cell cultures demonstrate that hMSCs in PEGDA microgels become senescent after 7 d. Alginate microgels dissolve within 7 d due to Ca2+ loss. In contrast, dextran-tyramine based microgels remain stable, sustain hMSCs metabolic activity, and permit for single-cell level analysis for at least 28 d of culture. In conclusion, enzymatically crosslinking dextran-tyramine conjugates represent a novel biomaterial class for the on-chip production of cell-laden microgels, which possesses unique advantages as compared to the commonly used UV and ionic crosslinking biomaterials.


Assuntos
Alginatos/química , Reagentes de Ligações Cruzadas/química , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Polietilenoglicóis/química , Técnicas de Cultura de Células/métodos , Células Cultivadas , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Géis , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Células-Tronco Mesenquimais/citologia , Fatores de Tempo
8.
Biomicrofluidics ; 8(5): 054119, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25538809

RESUMO

Genetic sequence and hyper-methylation profile information from the promoter regions of tumor suppressor genes are important for cancer disease investigation. Since hyper-methylated DNA (hm-DNA) is typically present in ultra-low concentrations in biological samples, such as stool, urine, and saliva, sample enrichment and amplification is typically required before detection. We present a rapid microfluidic solid phase extraction (µSPE) system for the capture and elution of low concentrations of hm-DNA (≤1 ng ml(-1)), based on a protein-DNA capture surface, into small volumes using a passive microfluidic lab-on-a-chip platform. All assay steps have been qualitatively characterized using a real-time surface plasmon resonance (SPR) biosensor, and quantitatively characterized using fluorescence spectroscopy. The hm-DNA capture/elution process requires less than 5 min with an efficiency of 71% using a 25 µl elution volume and 92% efficiency using a 100 µl elution volume.

9.
Lab Chip ; 14(23): 4461-4, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25284632

RESUMO

We report a wafer-scale fabrication process for the production of glass-FEP-glass microdevices using UV-curable adhesive (NOA81) as gluing material, which is applied using a novel "spin & roll" approach. Devices are characterized for the uniformity of the gluing layer, presence of glue in the microchannels, and alignment precision. Experiments on lipid bilayers with electrophysiological recordings using a model pore-forming polypeptide are demonstrated.


Assuntos
Vidro/química , Bicamadas Lipídicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Politetrafluoretileno/análogos & derivados , Adesivos , Eletrofisiologia , Desenho de Equipamento , Politetrafluoretileno/química
10.
PLoS One ; 9(4): e93618, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24690887

RESUMO

While scanning electrochemical microscopy (SECM) is a powerful technique for non-invasive analysis of cells, SECM-based assays remain scarce and have been mainly limited so far to single cells, which is mostly due to the absence of suitable platform for experimentation on 3D cellular aggregates or microtissues. Here, we report stamping of a Petri dish with a microwell array for large-scale production of microtissues followed by their in situ analysis using SECM. The platform is realized by hot embossing arrays of microwells (200 µm depth; 400 µm diameter) in commercially available Petri dishes, using a PDMS stamp. Microtissues form spontaneously in the microwells, which is demonstrated here using various cell lines (e.g., HeLa, C2C12, HepG2 and MCF-7). Next, the respiratory activity of live HeLa microtissues is assessed by monitoring the oxygen reduction current in constant height mode and at various distances above the platform surface. Typically, at a 40 µm distance from the microtissue, a 30% decrease in the oxygen reduction current is measured, while above 250 µm, no influence of the presence of the microtissues is detected. After exposure to a model drug (50% ethanol), no such changes in oxygen concentration are found at any height in solution, which reflects that microtissues are not viable anymore. This is furthermore confirmed using conventional live/dead fluorescent stains. This live/dead assay demonstrates the capability of the proposed approach combining SECM and microtissue arrays formed in a stamped Petri dish for conducting cellular assays in a non-invasive way on 3D cellular models.


Assuntos
Agregação Celular/genética , Técnicas de Cultura de Células/métodos , Microscopia Eletroquímica de Varredura/métodos , Membrana Celular/ultraestrutura , Respiração Celular/fisiologia , Células HeLa , Humanos , Células MCF-7 , Consumo de Oxigênio
11.
Electrophoresis ; 35(2-3): 385-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23856757

RESUMO

In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research.


Assuntos
Ensaios de Triagem em Larga Escala/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/instrumentação , Linhagem Celular Tumoral , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/métodos , Humanos , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos
12.
Analyst ; 138(16): 4585-92, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23748871

RESUMO

Today, droplet based microfluidics has become a standard platform for high-throughput single cell experimentation and analysis. However, until now no label-free, integrated single cell detection and discrimination method in droplets is available. We present here a microfluidic chip for fast (>100 Hz) and label-free electrical impedance based detection of cells in droplets. The microfluidic glass-PDMS device consists of two main components, the droplet generator and the impedance sensor. The planar electrode pair in the main channel allows the detection of only cells and cell containing droplets passing the electrodes using electrical impedance measurements. At a measurement frequency of 100 kHz non-viable cells, in low-conducting (LC) buffer, show an increase in impedance, due to the resistive effect of the membrane. The opposite effect, an impedance decrease, was observed when a viable cell passed the electrode pair, caused by the presence of the conducting cytoplasm. Moreover, we found that the presence of a viable cell in a droplet also decreased the measured electrical impedance. This impedance change was not visible when a droplet containing a non-viable cell or an empty droplet passed the electrode pair. A non-viable cell in a droplet and an empty droplet were equally classified. Hence, droplets containing (viable) cells can be discriminated from empty droplets. In conclusion, these results provide us with a valuable method to label-free detect and select viable cells in droplets. Furthermore, the proposed method provides the first step towards additional information regarding the encapsulated cells (e.g., size, number, morphology). Moreover, this all-electric approach allows for all-integrated Lab on a Chip (LOC) devices for cell applications using droplet-based platforms.


Assuntos
Sobrevivência Celular , Técnicas Eletroquímicas/métodos , Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/métodos , Água/química , Animais , Linhagem Celular Tumoral , Camundongos
13.
Lab Chip ; 13(18): 3562-8, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23702711

RESUMO

Organs-on-chips are microengineered in vitro tissue structures that can be used as platforms for physiological and pathological research. They provide tissue-like microenvironments in which different cell types can be co-cultured in a controlled manner to create synthetic organ mimics. Blood vessels are an integral part of all tissues in the human body. Development of vascular structures is therefore an important research topic for advancing the field of organs-on-chips since generated tissues will require a blood or nutrient supply. Here, we have engineered three-dimensional constructs of vascular tissue inside microchannels by injecting a mixture of human umbilical vein endothelial cells, human embryonic stem cell-derived pericytes (the precursors of vascular smooth muscle cells) and rat tail collagen I into a polydimethylsiloxane microfluidic channel with dimensions 500 µm × 120 µm × 1 cm (w × h × l). Over the course of 12 h, the cells organized themselves into a single long tube resembling a blood vessel that followed the contours of the channel. Detailed examination of tube morphology by confocal microscopy revealed a mature endothelial monolayer with complete PECAM-1 staining at cell-cell contacts and pericytes incorporated inside the tubular structures. We also demonstrated that tube formation was disrupted in the presence of a neutralizing antibody against transforming growth factor-beta (TGF-ß). The TGF-ß signaling pathway is essential for normal vascular development; deletion of any of its components in mouse development results in defective vasculogenesis and angiogenesis and mutations in humans have been linked to multiple vascular genetic diseases. In the engineered microvessels, inhibition of TGF-ß signaling resulted in tubes with smaller diameters and higher tortuosity, highly reminiscent of the abnormal vessels observed in patients with one particular vascular disease known as hereditary hemorrhagic telangiectasia (HHT). In summary, we have developed microengineered three-dimensional vascular structures that can be used as a model to test the effects of drugs and study the interaction between different human vascular cell types. In the future, the model may be integrated into larger tissue constructs to advance the development of organs-on-chips.


Assuntos
Técnicas de Cultura de Células/instrumentação , Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Pericitos/citologia , Animais , Anticorpos Neutralizantes/imunologia , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Colágeno Tipo I/química , Dimetilpolisiloxanos/química , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Humanos , Microscopia Confocal , Microvasos/metabolismo , Pericitos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Transdução de Sinais , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(18): 6886-91, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22511716

RESUMO

Physical forces play a major role in the organization of developing tissues. During vascular development, physical forces originating from a fluid phase or from cells pulling on their environment can alter cellular signaling and the behavior of cells. Here, we observe how tissue deformation spatially modulates angiogenic signals and angiogenesis. Using soft lithographic templates, we assemble three-dimensional, geometric tissues. The tissues contract autonomously, change shape stereotypically and form patterns of vascular structures in regions of high deformations. We show that this emergence correlates with the formation of a long-range gradient of Vascular Endothelial Growth Factor (VEGF) in interstitial cells, the local overexpression of the corresponding receptor VEGF receptor 2 (VEGFR-2) and local differences in endothelial cells proliferation. We suggest that tissue contractility and deformation can induce the formation of gradients of angiogenic microenvironments which could contribute to the long-range patterning of the vascular system.


Assuntos
Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Actinas/metabolismo , Sequência de Bases , Fenômenos Biomecânicos , Técnicas de Cocultura , Primers do DNA/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Miosinas/metabolismo , Neovascularização Fisiológica/genética , Transdução de Sinais/fisiologia , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
15.
EJIFCC ; 23(3): 80-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27683420

RESUMO

Breast cancer is one of the leading causes of cancer deaths among women. Although significant advances in the prevention, diagnosis and management are made, still every year half a million women die of breast cancer. Personalised treatment has the potential to increase treatment efficacy, and hence decrease mortality rates. Moreover, understanding cancer biology and translating this knowledge to the clinic, will improve the breast cancer therapy regime tremendously. Recently, it has been proposed that cancer stem cells (CSC) play an important role in tumour biology. CSC have the ability for self-renewal and are pivotal in setting the heterogeneous character of a tumour. Additionally, CSC possess several characteristics that make them resistant and more aggressive to the conventional chemo- and radiotherapy. Nowadays, breast cancer therapy is focused on killing the differentiated tumour cells, leaving the CSC unharmed, potentially causing recurrence of the disease and metastasis. Specific targeting of the CSC will improve the disease-free survival of breast cancer patients. In this article, two methods are described, aiming at specifically attacking the differentiated tumour cells ('Apoptosis chip') and the cancer stem cell. For this, microfluidics is used.

16.
Electrophoresis ; 32(22): 3138-46, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22025094

RESUMO

This article describes the development and full characterization of a microfluidic chip for electrofusion of human peripheral blood B-cells and mouse myeloma (NS-1) cells to generate hybridomas. The chip consists of an array of 783 traps, with dimensions that were optimized to obtain a final cell pairing efficiency of 33±6%. B cells were stained with a cytoplasmic stain CFDA to assess the different stages of cell fusion, i.e. dye transfer to NS-1 cells (initiating fusion) and membrane reorganization (advanced fusion). Six DC pulses of 100 µs (2.5 kV/cm) combined with an AC field (30 s, 2 MHz, 500 V/cm) and pronase treatment resulted in the highest electrofusion efficiency of paired cells (51±11%). Hybridoma formation, with a yield of 0.33 and 1.2%, was observed after culturing the fused cells for 14 days in conditioned medium. This work provides valuable leads to improve the current electrofusion protocols for the production of human antibodies for diagnostic and therapeutic applications.


Assuntos
Linfócitos B/citologia , Fusão Celular/instrumentação , Técnicas Eletroquímicas/instrumentação , Hibridomas/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Mieloma Múltiplo/patologia , Animais , Fusão Celular/métodos , Separação Celular/métodos , Humanos , Hibridomas/fisiologia , Camundongos , Técnicas Analíticas Microfluídicas/métodos
17.
Electrophoresis ; 32(22): 3094-100, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22025223

RESUMO

We report a PDMS microfluidic platform for parallel single-cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non-invasive analysis schemes are performed. First, we report single-cell trapping in a fast (2-5 min) and reproducible manner with a single-cell capture yield of 85% using two cell lines (P3x63Ag8 and MCF-7), employing a protocol which is scalable and easily amenable to automation. Following this, a mixed population of P3x63Ag8 and MCF-7 cells is stained in situ using the nucleic acid probe (Hoechst) and a phycoerythrin-labeled monoclonal antibody directed at EpCAM present on the surface of the breast cancer cells MCF-7 and absent on the myeloma cells P3x63Ag8 to illustrate the potential of the device to analyze cell population heterogeneity. Next, cells are porated in situ using chemicals in a reversible (digitonin) or irreversible way (lithium dodecyl sulfate). This is visualized by the transportation of fluorescent dyes through the membrane (propidium iodide and calcein). Finally, an electrical protocol is developed for combined cell permeabilization and electroosmotic flow (EOF)-based extraction of the cell content. It is validated here using calcein-loaded cells and visualized through the progressive recovery of calcein in the side channels, indicating successful retrieval of individual cell content.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Animais , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Eletro-Osmose , Fluoresceínas/química , Corantes Fluorescentes , Humanos , Espaço Intracelular/química , Camundongos , Reprodutibilidade dos Testes
18.
Biomed Microdevices ; 10(5): 727-37, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18523888

RESUMO

Breast cancer is the leading cause of cancer deaths among non-smoking women worldwide. At the moment the treatment regime is such that patients receive different chemotherapeutic and/or hormonal treatments dependent on the hormone receptor status, the menopausal status and age. However, in vitro sensitivity testing of tumor biopsies could rationalize and improve the choice of chemo- and hormone therapy. Lab-on-a-Chip devices, using microfluidic techniques, make detailed cellular analysis possible using fewer cells, enabling working with a patients' own cells and performing chemo- and hormone sensitivity testing in an ex vivo setting. This article describes the development of two microfluidic devices made in poly(dimethylsiloxane) (PDMS) to validate the cell culture properties and analyze the chemosensitivity of MCF-7 cells (estrogen receptor positive human breast cancer cells) in response to the drug staurosporine (SSP). In both cases, cell viability was assessed using the life-stain Calcein-AM (CAAM) and the death dye propidium iodide (PI). MCF-7 cells could be statically cultured for up to 7 days in the microfluidic chip. A 30 min flow with SSP and a subsequent 24 h static incubation in the incubator induced apoptosis in MCF-7 cells, as shown by a disappearance of the aggregate-like morphology, a decrease in CAAM staining and an increase in PI staining. This work provides valuable leads to develop a microfluidic chip to test the chemosensitivity of tumor cells in response to therapeutics and in this way improve cancer treatment towards personalized medicine.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bioensaio/instrumentação , Neoplasias da Mama/tratamento farmacológico , Técnicas Analíticas Microfluídicas/instrumentação , Bioensaio/métodos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Avaliação Pré-Clínica de Medicamentos , Feminino , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Polímeros/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estaurosporina/farmacologia , Fatores de Tempo
19.
Lab Chip ; 7(12): 1666-72, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18030385

RESUMO

We report here the sonoporation of HL60 (human promyelocytic leukemia) suspension cells in a microfluidic confinement using a single laser-induced cavitation bubble. Cavitation bubbles can induce membrane poration of cells located in their close vicinity. Membrane integrity of suspension cells placed in a microfluidic chamber is probed through either the calcein release out of calcein-loaded cells or the uptake of trypan blue. Cells that are located farther away than four times Rmax (maximum bubble radius) from the cavitation bubble center remain fully unaffected, while cells closer than 0.75 Rmax become porated with a probability of >75%. These results enable us to define a distance of 0.75 Rmax as a critical interaction distance of the cavitation bubble with HL60 suspension cells. These experiments suggest that flow-induced poration of suspension cells is applicable in lab-on-a-chip systems, and this might be an interesting alternative to electroporation.


Assuntos
Microfluídica/instrumentação , Microfluídica/métodos , Linhagem Celular Tumoral , Humanos , Sonicação
20.
Electrophoresis ; 27(24): 5073-80, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17124709

RESUMO

This paper presents a study in which different commonly used microchip materials (silicon oxide, borosilicate glass, and PDMS) were analyzed for their effect on human promyelocytic leukemic (HL60) cells. Copper-coated silicon was analyzed for its toxicity and therefore served as a positive control. With quantitative PCR, the expression of the proliferation marker Cyclin D1 and the apoptosis marker tissue transglutaminase were measured. Flow cytometry was used to analyze the distribution through the different phases of the cell cycle (propidium iodide, PI) and the apoptotic cascade (Annexin V in combination with PI). All microchip materials, with the exception of Cu, appeared to be suitable for HL60 cells, showing a ratio apoptosis/proliferation (R(ap)) comparable to materials used in conventional cell culture (polystyrene). These results were confirmed with cell cycle analysis and apoptosis studies. Precoating the microchip material surfaces with serum favor the proliferation, as demonstrated by a lower R(ap) as compared to uncoated surfaces. The Cu-coated surface appeared to be toxic for HL60 cells, showing over 90% decreased viability within 24 h. From these results, it can be concluded that the chosen protocol is suitable for selection of the cell culture material, and that the most commonly used microchip materials are compatible with HL60 culturing.


Assuntos
Materiais Revestidos Biocompatíveis/toxicidade , Eletroforese em Microchip/normas , Teste de Materiais , Apoptose , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Ciclina D1/genética , Células HL-60 , Humanos , RNA Mensageiro/análise , Dióxido de Silício/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA