Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Rheumatology (Oxford) ; 58(6): 1065-1074, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649473

RESUMO

OBJECTIVES: Previously, we have shown the involvement of Wnt-activated protein Wnt-1-induced signaling protein 1 (WISP1) in the development of OA in mice. Here, we aimed to characterize the relation between WISP1 expression and human OA and its regulatory epigenetic determinants. METHODS: Preserved and lesioned articular cartilage from end-stage OA patients and non-OA-diagnosed individuals was collected. WISP1 expression was determined using immunohistochemistry and damage was classified using Mankin scoring. RNA expression and DNA methylation were assessed in silico from genome-wide datasets (microarray analysis and RNA sequencing, and 450 k-methylationarrays, respectively). Effects of WISP1 were tested in pellet cultures of primary human chondrocytes. RESULTS: WISP1 expression in cartilage of OA patients was increased compared with non-OA-diagnosed controls and, within OA patients, WISP1 was even higher in lesioned compared with preserved regions, with expression strongly correlating with Mankin score. In early symptomatic OA patients with disease progression, higher synovial WISP1 expression was observed as compared with non-progressors. Notably, increased WISP1 expression was inversely correlated with methylation levels of a positional CpG-dinucleotide (cg10191240), with lesioned areas showing strong hypomethylation for this CpG as compared with preserved cartilage. Additionally, we observed that methylation levels were allele-dependent for an intronic single-nucleotide polymorphism nearby cg10191240. Finally, addition of recombinant WISP1 to pellets of primary chondrocytes strongly inhibited deposition of extracellular matrix as reflected by decreased pellet circumference, proteoglycan content and decreased expression of matrix components. CONCLUSION: Increased WISP1 expression is found in lesioned human articular cartilage, and appears epigenetically regulated via DNA methylation. In vitro assays suggest that increased WISP1 is detrimental for cartilage integrity.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite do Joelho/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Epigênese Genética , Humanos , Articulação do Joelho/metabolismo
2.
Rheumatology (Oxford) ; 58(3): 536-546, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508140

RESUMO

OBJECTIVE: To investigate the role of AXL, a member of the anti-inflammatory TYRO3, AXL MER (TAM) receptor family, in arthritis. METHODS: KRN serum transfer arthritis was induced in Axl-/- and wild-type mice. Knee and ankle joints were scored macro- and microscopically. Synovial gene and protein expression of Axl was determined in naïve and TGF-ß1-overexpressing joints. AXL expression was determined in M1-like or M2-like macrophages and RA synovium. Human macrophages, fibroblasts and synovial micromasses were stimulated with TGF-ß1 or the AXL inhibitor R428. RESULTS: Ankle joints of Axl-/- mice showed exacerbated arthritis pathology, whereas no effect of Axl gene deletion was observed on gonarthritis pathology. To explain this spatial difference, we examined the synovium of naïve mice. In contrast to the knee, the ankle synovial cells prominently expressed AXL. Moreover, the M2-like macrophage phenotype was the dominant cell type in the naïve ankle joint. Human M2-like macrophages expressed higher levels of AXL and blocking AXL increased their inflammatory response. In the murine ankle synovium, gene expression of Tgfb1 was increased and Tgb1 correlated with Axl. Moreover, TGFB1 and AXL expression also correlated in human RA synovium. In human macrophages and synovial micromasses, TGF-ß1 enhanced AXL expression. Moreover, TGF-ß1 overexpression in naïve murine knee joints induced synovial AXL expression. CONCLUSION: Differences in synovial AXL expression are in accordance with the observation that AXL dampens arthritis in ankle, but not in knee joints. We provide evidence that the local differences in AXL expression could be due to TGF-ß1, and suggest similar pathways operate in RA synovium.


Assuntos
Artrite Experimental/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Membrana Sinovial/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Articulação do Tornozelo/metabolismo , Artrite Experimental/genética , Fibroblastos/metabolismo , Humanos , Articulação do Joelho/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Receptor Tirosina Quinase Axl
3.
PeerJ ; 6: e4771, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868252

RESUMO

OBJECTIVE: Tumor necrosis factor-inducible gene 6 (TSG-6) has anti-inflammatory and chondroprotective effects in mouse models of inflammatory arthritis. Because cartilage damage and inflammation are also observed in osteoarthritis (OA), we determined the effect of viral overexpression of TSG-6 in experimental osteoarthritis. METHODS: Bone marrow-derived cells were differentiated to multinucleated osteoclasts in the presence of recombinant TSG-6 or after transduction with a lentiviral TSG-6 expression vector. Multi-nucleated osteoclasts were analyzed after tartrate resistant acid phosphatase staining and resorption activity was determined on dentin slices. Collagenase-induced osteoarthritis (CIOA) was induced in C57BL/6 mice after intra-articular injection of an adenoviral TSG-6 or control luciferase expression vector. Inflammation-related protease activity was measured using bioluminescent Prosense probes. After a second adenovirus injection, cartilage damage was assessed in histological sections stained with Safranin-O. Ectopic bone formation was scored in X-ray images of the affected knees. RESULTS: TSG-6 did not inhibit the formation of multi-nucleated osteoclasts, but caused a significant reduction in the resorption activity on dentin slices. Adenoviral TSG-6 gene therapy in CIOA could not reduce the cartilage damage compared to the luciferase control virus and no significant difference in inflammation-related protease activity was noted between the TSG-6 and control treated group. Instead, X-ray analysis and histological analysis revealed the presence of ectopic bone formation in the TSG-6 treated group. CONCLUSION: Gene therapy based on the expression of TSG-6 could not provide cartilage protection in experimental osteoarthritis, but instead resulted in increased ectopic bone formation.

4.
Front Immunol ; 9: 742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706963

RESUMO

Objective: Rheumatoid arthritis (RA) is a chronic and progressive joint disease. It appears that anti-inflammatory feedback mechanisms that could restrain joint inflammation and restore homeostasis are insufficient to perform this control. In this study, we investigated the contribution of the MER tyrosine kinase-mediated anti-inflammatory response on arthritis and whether targeting MER could be a valid approach to treat RA. Methods: KRN serum transfer arthritis (KRN STA) was induced in either Mertk-deficient mice or in mice that adenovirally overexpressed Pros1. Human synovial micromasses were treated with MER-specific antibodies or PROS1. Collagen-induced arthritis (CIA) mice were treated with MER-specific agonistic antibodies or by viral overexpression of Pros1. Results: Mertk-/- mice showed exacerbated arthritis pathology, whereas Pros1 overexpression diminished joint pathology in KRN STA. Human synovial micromasses challenged with MER-specific antibodies enhanced the secretion of inflammatory cytokines, whereas stimulating MER with PROS1 reduced the secretion of these cytokines, confirming the protective role of MER. Next, we treated CIA mice with MER-specific agonistic antibodies, and this unexpectedly resulted in exacerbated arthritis pathology. This was associated with increased numbers of apoptotic cells in their knee joints and higher serum levels of interleukin (IL)-16C, a cytokine released by secondary necrotic neutrophils. Apoptotic cell numbers and IL-16C levels were enhanced during arthritis in Mertk-/- mice and reduced in Pros1-overexpressing mice. Conclusion: MER plays a protective role during joint inflammation and activating MER by its ligand PROS1 ameliorates disease. Treatment of mice with MER receptor agonistic antibodies is deleterious due to its counterproductive effect of blocking efferocytosis in the arthritic joint.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Proteínas de Transporte/fisiologia , c-Mer Tirosina Quinase/fisiologia , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Proteínas de Ligação ao Cálcio , Linhagem Celular , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Articulação do Joelho/imunologia , Articulação do Joelho/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Membrana Sinovial/imunologia
5.
Arthritis Rheumatol ; 69(10): 1978-1983, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28678406

RESUMO

OBJECTIVE: Increased Wnt signaling in chondrocytes is associated with development of osteoarthritis (OA). However, OA is considered a disease of the entire joint, where the synovium has been attributed an important role in disease pathogenesis and progression. This study was undertaken to determine whether Wnt signaling in synovial tissue could contribute to pathologic development of OA through the production of matrix metalloproteinases (MMPs), and to assess the relationship of synovial expression of Frizzled (FZD) receptors and the Wnt inhibitor FRZB to MMP expression and disease progression in patients with early OA in the Dutch Cohort Hip and Cohort Knee (CHECK) study cohort. METHODS: In mouse knee joints, human WNT8A and mouse Wnt16 were overexpressed using adenoviral vectors, and expression of messenger RNA (mRNA) for MMPs in the synovium was determined by reverse transcription-polymerase chain reaction or Luminex assay. In human synovial tissue from a subgroup of patients with early OA with knee pain enrolled in the CHECK cohort, levels of Wnt family members were assessed for linkage to MMP expression and disease progression. In addition, MMP production in human synovium from patients with end-stage OA was determined after stimulation of Wnt signaling with WNT3A or inhibition with FRZB or DKK1 in the synovium. RESULTS: Overexpression of WNT8A and Wnt16 in mouse knee joints induced MMP expression in vivo. Expression of MMPs relevant to human OA in the synovium from CHECK study participants significantly correlated with expression of FZD1, FZD10, and FRZB mRNA. Moreover, increased FZD1 mRNA expression and decreased FRZB mRNA expression were observed in CHECK study patients who experienced disease progression compared to those who were nonprogressors. Stimulation of human OA synovium with WNT3A induced the production of various MMPs, whereas inhibition of Wnt signaling with FRZB or DKK1 reduced the production of MMPs. CONCLUSION: Wnt signaling in the synovium may potently induce progression of OA via increased production of MMPs.


Assuntos
Metaloproteinases da Matriz/genética , Osteoartrite do Joelho/genética , RNA Mensageiro/metabolismo , Membrana Sinovial/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Idoso , Animais , Artroscopia , Progressão da Doença , Feminino , Receptores Frizzled/genética , Técnicas de Introdução de Genes , Glicoproteínas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Pessoa de Meia-Idade , Países Baixos , Osteoartrite do Joelho/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
PLoS One ; 12(2): e0171757, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158305

RESUMO

Th17 cells and their cytokines are linked to the pathogenesis of rheumatoid arthritis, a chronic autoimmune disease characterized by joint inflammation. Th17 development is initiated by combined signaling of TGF-ß and IL-6 or IL-21, and can be reduced in the absence of either IL-6 or IL-21. The aim of this study was to assess whether combinatorial IL-6/IL-21 blockade would more potently inhibit Th17 development, and be more efficacious in treating arthritis than targeting either cytokine. We assessed in vitro Th17 differentiation efficacy in the absence of IL-6 and/or IL-21. To investigate in vivo effects of IL-6/IL-21 blockade on Th17 and arthritis development, antigen-induced arthritis (AIA) was induced in IL-6-/- x IL-21R-/- mice. The therapeutic potential of this combined blocking strategy was assessed by treating mice with collagen-induced arthritis (CIA) with anti-IL-6R antibodies and soluble (s)IL-21R.Fc. We demonstrated that combined IL-6/IL-21 blocking synergistically reduced in vitro Th17 differentiation. In mice with AIA, absence of IL-6 and IL-21 signaling more strongly reduced Th17 levels and resulted in stronger suppression of arthritis than the absence of either cytokine. Additionally, anti-IL-6/anti-IL-21 treatment of CIA mice during the arthritis induction phase reduced disease development more potent than IL-6 or IL-21 inhibition alone, as effective as anti-TNF treatment. Collectively, these results suggest dual IL-6/IL-21 inhibition may be a more efficacious therapeutic strategy compared to single cytokine blockade to suppress arthritis development.


Assuntos
Artrite Experimental/tratamento farmacológico , Colágeno/toxicidade , Interleucina-6/uso terapêutico , Interleucinas/uso terapêutico , Células Th17/metabolismo , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Linfócitos T CD4-Positivos , Diferenciação Celular/efeitos dos fármacos , Feminino , Citometria de Fluxo , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos
7.
J Cell Physiol ; 232(1): 225-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27138291

RESUMO

The general consensus is that milk promotes bone growth and density because is a source of calcium and contains components that enhance intestinal calcium uptake or directly affect bone metabolism. In this study, we investigated the effect of bovine-derived milk 100,000 g pellet (P100), which contains nanoparticles (<220 nm) including extracellular vesicles, on osteoclast differentiation and bone resorption. Bone marrow-derived osteoclast precursor cells were differentiated into osteoclasts by M-CSF and RANKL (control) and in the presence of milk P100. Milk P100 treatment until day 4 increased the number of TRAP-positive mononuclear cells and small (≤5 nuclei) osteoclasts. The number of large (≥6 nuclei) osteoclasts remained the same. These alterations were associated with increased expression of TRAP, NFATc1, and c-Fos. Cells seeded in a calcium-phosphate coated plate or bone slices showed reduced resorption area when exposed to milk P100 during the differentiation phase and even after osteoclast formation. Interestingly, milk P100 treatment enhanced Cathepsin K expression but reduced Carbonic Anhydrase 2 gene expression. Moreover, intracellular acid production was also decreased by milk P100 treatment. Oral delivery of milk P100 to female DBA1/J mice for 7 weeks did not alter bone area; however, increased osteoclast number and area in tibia without changes in serum RANKL and CTX-I levels. We showed for the first time the effect of milk P100 on osteoclast differentiation both in vitro and in vivo and found that milk P100 increased the formation of small osteoclasts but this does not lead to more bone resorption probably due to reduced acid secretion. J. Cell. Physiol. 232: 225-233, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Leite/metabolismo , Nanopartículas/administração & dosagem , Osteoclastos/metabolismo , Animais , Reabsorção Óssea/metabolismo , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/fisiologia , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Arthritis Res Ther ; 18: 186, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27519904

RESUMO

BACKGROUND: Gene therapy has the potential to provide long-term production of therapeutic proteins in the joints of osteoarthritis (OA) patients. The objective of this study was to analyse the therapeutic potential of disease-inducible expression of anti-inflammatory interleukin-10 (IL-10) in the three-dimensional micromass model of the human synovial membrane. METHODS: Synovial tissue samples from OA patients were digested and the cells were mixed with Matrigel to obtain 3D micromasses. The CXCL10 promoter combined with the firefly luciferase reporter in a lentiviral vector was used to determine the response of the CXCL10 promoter to tumour necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß) and lipopolysaccharide (LPS). The effects of recombinant IL-10 on gene expression were determined by quantitative PCR. The production of IL-10 from the CXCL10p-IL10 vector and the effects on pro-inflammatory cytokine production were assessed by multiplex ELISA. RESULTS: Micromasses made from whole synovial membrane cell suspensions form a distinct surface composition containing macrophage and fibroblast-like synoviocytes thus mimicking the synovial lining. This lining can be transduced by lentiviruses and allow CXCL-10 promoter-regulated transgene expression. Adequate amounts of IL-10 transgene were produced after stimulation with pro-inflammatory factors able to reduce the production of synovial IL-1ß and IL-6. CONCLUSIONS: Synovial micromasses are a suitable model to test disease-regulated gene therapy approaches and the CXCL10p-IL10 vector might be a good candidate to decrease the inflammatory response implicated in the pathogenesis of OA.


Assuntos
Terapia Genética/métodos , Interleucina-10/biossíntese , Osteoartrite/imunologia , Membrana Sinovial/imunologia , Técnicas de Cultura de Tecidos/métodos , Quimiocina CXCL10/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Vetores Genéticos , Humanos , Interleucina-10/imunologia , Lentivirus , Masculino , Microscopia Confocal , Osteoartrite/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Membrana Sinovial/metabolismo
9.
J Rheumatol ; 43(10): 1874-1884, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481901

RESUMO

OBJECTIVE: The alarmins S100A8 and S100A9 have been shown to regulate synovial activation, cartilage damage, and osteophyte formation in osteoarthritis (OA). Here we investigated the effect of S100A9 on the production of proinflammatory cytokines and matrix metalloprotease (MMP) in OA synovium, granulocyte macrophage colony-stimulating factor (GM-CSF)-differentiated/macrophage colony-stimulating factor (M-CSF)-differentiated macrophages, and OA fibroblasts. METHODS: We determined which cell types in the synovium produced S100A8 and S100A9. Further, the production of proinflammatory cytokines and MMP, and the activation of canonical Wnt signaling, was determined in human OA synovium, OA fibroblasts, and monocyte-derived macrophages following stimulation with S100A9. RESULTS: We observed that S100A8 and S100A9 were mainly produced by GM-CSF-differentiated macrophages present in the synovium, and to a lesser extent by M-CSF-differentiated macrophages, but not by fibroblasts. S100A9 stimulation of OA synovial tissue increased the production of the proinflammatory cytokines interleukin (IL) 1ß, IL-6, IL-8, and tumor necrosis factor-α. Additionally, various MMP were upregulated after S100A9 stimulation. Experiments to determine which cell type was responsible for these effects revealed that mainly stimulation of GM-CSF-differentiated macrophages and to a lesser extent M-CSF-differentiated macrophages with S100A9 increased the expression of these proinflammatory cytokines and MMP. In contrast, stimulation of fibroblasts with S100A9 did not affect their expression. Finally, stimulation of GM-CSF-differentiated, but not M-CSF-differentiated macrophages with S100A9 activated canonical Wnt signaling, whereas incubation of OA synovium with the S100A9 inhibitor paquinimod reduced the activation of canonical Wnt signaling. CONCLUSION: Predominantly mediated by M1-like macrophages, the alarmin S100A9 stimulates the production of proinflammatory and catabolic mediators and activates canonical Wnt signaling in OA synovium.


Assuntos
Calgranulina B/metabolismo , Macrófagos/metabolismo , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Calgranulina B/farmacologia , Citocinas/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos
10.
Drug Des Devel Ther ; 10: 2069-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445458

RESUMO

Rheumatic disease is not a single disorder, but a group of more than 100 diseases that affect joints, connective tissues, and/or internal organs. Although rheumatic diseases like rheumatoid arthritis (RA), psoriatic arthritis, and ankylosing spondylitis (AS) differ in their pathogenesis and clinical presentation, the treatment of these inflammatory disorders overlaps. Non-steroid anti-inflammatory drugs are used to reduce pain and inflammation. Additional disease-modifying anti-rheumatic drugs are prescribed to slowdown disease progression, and is in RA more frequently and effectively applied than in AS. Biologicals are a relatively new class of treatments that specifically target cytokines or cells of the immune system, like tumor necrosis factor alpha inhibitors or B-cell blockers. A new kid on the block is the interleukin-17 (IL-17) inhibitor secukinumab, which has been recently approved by the US Food and Drug Administration for moderate-to-severe plaque psoriasis, psoriatic arthritis, and AS. IL-17 is a proinflammatory cytokine that has an important role in host defense, but its proinflammatory and destructive effects have also been linked to pathogenic processes in autoimmune diseases like RA and psoriasis. Animal models have greatly contributed to further insights in the potential of IL-17 blockade in autoimmune and autoinflammatory diseases, and have resulted in the development of various potential drugs targeting the IL-17 pathway. Secukinumab (AIN457) is a fully human monoclonal antibody that selectively binds to IL-17A and recently entered the market under the brand name Cosentyx(®). By binding to IL-17A, secukinumab prevents it from binding to its receptor and inhibits its ability to trigger inflammatory responses that play a role in the development of various autoimmune diseases. With secukinumab being the first in class to receive Food and Drug Administration approval, this article will further focus on this new biologic agent and review the milestones in its development and marketing.


Assuntos
Anticorpos Monoclonais/farmacologia , Antirreumáticos/uso terapêutico , Artrite Psoriásica/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Interleucina-17/imunologia , Espondilite Anquilosante/tratamento farmacológico , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados , Humanos , Interleucina-17/química , Reumatologia
11.
Arthritis Rheumatol ; 68(1): 152-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26360647

RESUMO

OBJECTIVE: Both alarmins S100A8/A9 and canonical Wnt signaling have been found to play active roles in the development of experimental osteoarthritis (OA). However, what activates canonical Wnt signaling remains unknown. This study was undertaken to investigate whether S100A8 induces canonical Wnt signaling and whether S100 proteins exert their effects via activation of Wnt signaling. METHODS: Expression of the genes for S100A8/A9 and Wnt signaling pathway members was measured in an experimental OA model. Selected Wnt signaling pathway members were overexpressed, and levels of S100A8/A9 were measured. Activation of canonical Wnt signaling was determined after injection of S100A8 into naive joints and induction of collagenase-induced OA in S100A9-deficient mice. Expression of Wnt signaling pathway members was tested in macrophages and fibroblasts after S100A8 stimulation. Canonical Wnt signaling was inhibited in vivo to determine if the effects of S100A8 injections were dependent on Wnt signaling. RESULTS: The alarmins S100A8/A9 and members of the Wnt signaling pathway showed coinciding expression in synovial tissue in an experimental OA model. Synovial overexpression of selected Wnt signaling pathway members did not result in increased expression of S100 proteins. In contrast, intraarticular injection of S100A8 increased canonical Wnt signaling, whereas canonical Wnt signaling was decreased after induction of experimental OA in S100A9-deficient mice. S100A8 stimulation of macrophages, but not fibroblasts, resulted in increased expression of canonical Wnt signaling members. Overexpression of Dkk-1 to inhibit canonical Wnt signaling decreased the induction of matrix metalloproteinase 3, interleukin-6, and macrophage inflammatory protein 1α after injection of S100A8. CONCLUSION: Our findings indicate that the alarmin S100A8 induces canonical Wnt signaling in macrophages and murine knee joints. The effects of S100A8 are partially dependent on activation of canonical Wnt signaling.


Assuntos
Artrite Experimental/genética , Calgranulina A/genética , Calgranulina B/genética , Macrófagos/metabolismo , Osteoartrite do Joelho/genética , Joelho de Quadrúpedes/metabolismo , Membrana Sinovial/metabolismo , Via de Sinalização Wnt/genética , Alarminas/farmacologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Quimiocina CCL3/efeitos dos fármacos , Quimiocina CCL3/metabolismo , Colagenases/toxicidade , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Metaloproteinase 3 da Matriz/efeitos dos fármacos , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Osteoartrite do Joelho/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
12.
Hum Gene Ther ; 27(3): 244-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26711533

RESUMO

Disease-inducible promoters for the treatment of rheumatoid arthritis (RA) have the potential to provide regulated expression of therapeutic proteins in arthritic joints. In this study, we set out to identify promoters of human genes that are upregulated during RA and are suitable to drive the expression of relevant amounts of anti-inflammatory interleukin (IL)-10. Microarray analysis of RA synovial biopsies compared with healthy controls yielded a list of 22 genes upregulated during RA. Of these genes, CXCL10 showed the highest induction in lipopolysaccharide-stimulated synovial cells. The CXCL10 promoter was obtained from human cDNA and cloned into a lentiviral vector carrying firefly luciferase to determine the promoter inducibility in primary synovial cells and in THP-1 cells. The promoter activation was strongest 8-12 hr after stimulation with the proinflammatory cytokine tumor necrosis factor (TNF)-α and was reinducible after 96 hr. In addition, the CXCL10 promoter showed a significant response to RA patient serum, compared with sera from healthy individuals. The luciferase gene was replaced with IL-10 to determine the therapeutic properties of the CXCL10p-IL10 lentiviral vector. Primary synovial cells transduced with CXCL10p-IL10 showed a great increase in IL-10 production after stimulation, which reduced the release of proinflammatory cytokines TNF-α and IL-1ß. We conclude that the selected proximal promoter of the CXCL10 gene responds to inflammatory mediators present in the serum of patients with RA and that transduction with the lentiviral CXCL10p-IL10 vector reduces inflammatory cytokine production by primary synovial cells from patients with RA. CXCL10 promoter-regulated IL-10 overexpression can thus provide disease-inducible local gene therapy suitable for RA.


Assuntos
Artrite Reumatoide/genética , Quimiocina CXCL10/genética , Regulação da Expressão Gênica , Interleucina-10/genética , Regiões Promotoras Genéticas , Artrite Reumatoide/metabolismo , Artrite Reumatoide/terapia , Linhagem Celular , Citocinas/metabolismo , Perfilação da Expressão Gênica , Vetores Genéticos/genética , Humanos , Interleucina-10/metabolismo , Lentivirus/genética , Líquido Sinovial/metabolismo , Transgenes
13.
Rheumatology (Oxford) ; 55(9): 1536-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26667213

RESUMO

The Wnt signalling pathway is gaining increasing attention in the field of joint pathologies, attributable to its role in the development and homeostasis of the tissues found in the joint, including bone and cartilage. Imbalance in this pathway has been implicated in the development and progression of OA, and interference with the pathway might therefore depict an effective treatment strategy. Though offering multiple opportunities, it is yet to be decided which starting point will bring forth the most promising results. The complexity of the pathway and its interaction with other pathways (such as the TGF-ß signalling pathway, which also has a central role in the maintenance of joint homeostasis) means that acting directly on proteins in this signalling cascade entails a high risk of undesired side effects. Therefore, interference with Wnt-induced proteins, such as WISP1, might be an overall more effective and safer therapeutic approach to inhibit the pathological events that take place during OA.


Assuntos
Proteínas de Sinalização Intercelular CCN/fisiologia , Osteoartrite/etiologia , Proteínas Proto-Oncogênicas/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Proteínas Wnt/fisiologia , Via de Sinalização Wnt/fisiologia , Doenças das Cartilagens/etiologia , Doenças das Cartilagens/fisiopatologia , Comunicação Celular/fisiologia , Núcleo Celular/fisiologia , Condrócitos/fisiologia , Citoplasma/fisiologia , Homeostase/fisiologia , Humanos , Osteoartrite/fisiopatologia , Receptor Cross-Talk/fisiologia
14.
Arthritis Rheumatol ; 68(4): 795-804, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26606260

RESUMO

OBJECTIVE: The prevalence of periodontitis is increased in patients with rheumatoid arthritis (RA), and the severity of periodontitis can affect the level of arthritis. Porphyromonas gingivalis is one of the main bacteria involved in periodontitis. Our aim was to determine if there are differences in the innate immune response against P gingivalis between healthy controls and RA patients. METHODS: Monocyte-derived dendritic cells (DCs) from healthy controls, RA patients, and patients with psoriatic arthritis (PsA) were stimulated with P gingivalis, a range of other bacteria, and Toll-like receptor agonists. Cytokine production was determined, and blocking studies were performed to determine which receptors were involved in differential recognition of P gingivalis. Effects on T cell cytokines were also determined in cultures of peripheral blood mononuclear cells (PBMCs). RESULTS: Upon stimulation with P gingivalis, RA patient DCs produced less tumor necrosis factor as compared to healthy control DCs, which was not observed in PsA patients or upon stimulation with other bacteria. In addition, P gingivalis-mediated activation of RA patient PBMCs showed a clear reduction of interferon-γ production. Among the various possible underlying mechanisms investigated, only blockade of CR3 abolished the difference between RA patients and healthy controls, suggesting the involvement of CR3 in this process. CONCLUSION: Immune cells from RA patients display a reduced response to P gingivalis, which has functional consequences for the immune response. This may result in prolonged survival of P gingivalis, possibly driving autoantibody formation and a self-perpetuating loop of chronic inflammation. The possible role of CR3 in this process warrants further investigation.


Assuntos
Artrite Reumatoide/imunologia , Infecções por Bacteroidaceae/imunologia , Células Dendríticas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Psoriásica/imunologia , Estudos de Casos e Controles , Periodontite Crônica/imunologia , Periodontite Crônica/microbiologia , Citocinas/imunologia , Feminino , Citometria de Fluxo , Humanos , Técnicas In Vitro , Interferon gama/imunologia , Leucócitos Mononucleares/imunologia , Antígeno de Macrófago 1/imunologia , Masculino , Pessoa de Meia-Idade , Porphyromonas gingivalis , Linfócitos T/imunologia , Receptores Toll-Like/agonistas , Adulto Jovem
15.
Arthritis Res Ther ; 17: 230, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26307404

RESUMO

INTRODUCTION: Autoreactive T cells are a central element in many systemic autoimmune diseases. The generation of these pathogenic T cells is instructed by antigen-presenting cells (APCs). However, signaling pathways in APCs that drive autoimmune diseases, such as rheumatoid arthritis, are not understood. METHODS: We measured phenotypic maturation, cytokine production and induction of T cell proliferation of APCs derived from wt mice and mice with a myeloid-specific deletion of PTEN (myeloid PTEN(-/-)) in vitro and in vivo. We induced collagen-induced arthritis (CIA) and K/BxN serum transfer arthritis in wt and myeloid-specific PTEN(-/-) mice. We measured the cellular composition of lymph nodes by flow cytometry and cytokines in serum and after ex vivo stimulation of T cells. RESULTS: We show that myeloid-specific PTEN(-/-) mice are almost protected from CIA. Myeloid-specific deletion of PTEN leads to a significant reduction of cytokine expression pivotal for the induction of systemic autoimmunity such as interleukin (IL)-23 and IL-6, leading to a significant reduction of a Th17 type of immune response characterized by reduced production of IL-17 and IL-22. In contrast, myeloid-specific PTEN deficiency did not affect K/BxN serum transfer arthritis, which is independent of the adaptive immune system and solely depends on innate effector functions. CONCLUSIONS: These data demonstrate that the presence of PTEN in myeloid cells is required for the development of CIA. Deletion of PTEN in myeloid cells inhibits the development of autoimmune arthritis by preventing the generation of a pathogenic Th17 type of immune response.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Artrite Experimental/imunologia , Doenças Autoimunes/imunologia , PTEN Fosfo-Hidrolase/imunologia , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Western Blotting , Citocinas/sangue , Citocinas/genética , Citocinas/imunologia , Citometria de Fluxo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th17/metabolismo
16.
Mol Nutr Food Res ; 59(9): 1701-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26047123

RESUMO

SCOPE: This study shows the effect of bovine milk derived extracellular vesicles (BMEVs) on spontaneous polyarthritis in IL-1Ra-deficient mice and collagen-induced arthritis. METHODS AND RESULTS: BMEVs were isolated from semi-skimmed milk by ultracentrifugation and the particle size was around 100 nm by dynamic light scattering and electron microscopy. BMEVs expressed exosome marker CD63, immunoregulatory microRNA's (miR-30a, -223, -92a), and milk-specific beta-casein and beta-lactoglobulin mRNA. In vitro, PKH-67-labeled BMEVs were taken up by RAW264.7, splenocytes, and intestinal cells as determined by flow cytometry and confocal microscopy. IL-1Ra(-/-) mice received BMEVs by daily oral gavage starting at wk 5 till 15 after birth and collagen-induced arthritis mice via their drinking water starting 1 wk before immunization till day 40. Macroscopically, BMEV treatment delayed the onset of arthritis and histology showed diminished cartilage pathology and bone marrow inflammation in both models. BMEV treatment also reduced the serum levels of MCP-1 and IL-6 and their production by splenic cells. BMEV treatment diminished the anticollagen IgG2a levels, which was accompanied by reduced splenic Th1 (Tbet) and Th17 (RORγT) mRNA. CONCLUSION: This is the first report that oral delivery of BMEVs ameliorates experimental arthritis and this warrants further research to determine whether this beneficial effect can be seen in rheumatoid arthritis patients.


Assuntos
Artrite Experimental/terapia , Vesículas Extracelulares/metabolismo , Leite/química , Administração Oral , Animais , Caseínas/genética , Caseínas/metabolismo , Bovinos , Linhagem Celular Tumoral , Quimiocina CCL2/sangue , Colágeno/toxicidade , Exossomos/genética , Exossomos/metabolismo , Marcadores Genéticos , Imunoglobulina G/sangue , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-6/sangue , Lactoglobulinas/genética , Lactoglobulinas/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Tamanho da Partícula , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/citologia , Baço/metabolismo , Tetraspanina 30/genética , Tetraspanina 30/metabolismo
17.
Arthritis Res Ther ; 17: 163, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081345

RESUMO

INTRODUCTION: Type 17 T helper cells and interleukin (IL)-17 play important roles in the pathogenesis of human and murine arthritis. Although there is a clear link between IL-17 and granulocyte macrophage colony-stimulating factor (GM-CSF) in the inflammatory cascade, details about their interaction in arthritic synovial joints are unclear. In view of the introduction of GM-CSF and IL-17 inhibitors to the clinic, we studied how IL-17 and GM-CSF orchestrate the local production of inflammatory mediators during experimental arthritis. METHODS: To allow detection of additive, complementary or synergistic effects of IL-17 and GM-CSF, we used two opposing experimental approaches: treatment of arthritic mice with neutralising antibodies to IL-17 and GM-CSF and local overexpression of these cytokines in naive synovial joints. Mice were treated for 2 weeks with antibodies against IL-17 and/or GM-CSF after onset of collagen-induced arthritis. Naive mice were injected intraarticularly with adenoviral vectors for IL-17 and/or GM-CSF, resulting in local overexpression. Joint inflammation was monitored by macroscopic scoring, X-rays and histology. Joint washouts, synovial cell and lymph node cultures were analysed for cytokines, chemokines and inflammatory mediators by Luminex analysis, flow cytometry and quantitative polymerase chain reaction. RESULTS: Combined therapeutic anti-IL-17 and anti-GM-CSF ameliorated arthritis progression, and joint damage was dramatically reduced compared with treatment with anti-IL-17 or anti-GM-CSF alone. Anti-IL-17 specifically reduced synovial IL-23 transcription, whereas anti-GM-CSF reduced transcription of matrix metalloproteinases (MMPs) and receptor activator of nuclear factor κB ligand (RANKL). Overexpression of IL-17 or GM-CSF in naive knee joints elicited extensive inflammatory infiltrate, cartilage damage and bone destruction. Combined overexpression revealed additive and synergistic effects on the production of MMPs, RANKL and IL-23 in the synovium and led to complete destruction of the joint structure within 7 days. CONCLUSIONS: IL-17 and GM-CSF differentially mediate the inflammatory process in arthritic joints and show complementary and local additive effects. Combined blockade in arthritic mice reduced joint damage not only by direct inhibition of IL-17 and GM-CSF but also by indirect inhibition of IL-23 and RANKL. Our results provide a rationale for combination therapy in autoinflammatory conditions, especially for patients who do not fully respond to inhibition of the separate cytokines.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Interleucina-17/imunologia , Transdução de Sinais/imunologia , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Osso e Ossos/patologia , Cartilagem Articular/patologia , Citometria de Fluxo , Interleucina-23/imunologia , Masculino , Metaloproteinases da Matriz/imunologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Receptor Ativador de Fator Nuclear kappa-B/imunologia , Células Th17/imunologia
18.
Am J Pathol ; 185(7): 1970-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25976248

RESUMO

Proteins from the Wnt signaling pathway are very important for joint development. Curiously, osteoarthritis (OA) is thought to be a recapitulation of developmental processes. Various members of the Wnt signaling pathway are overexpressed in the synovium during experimental OA. Here, we investigated the potency of specific Wnt proteins, when expressed in the synovium, to induce OA pathology. We overexpressed Wnt5a, Wnt8a, Wnt16, and WISP1 in the synovium using adenoviral vectors. We determined whether overexpression resulted in OA pathology by histology, and we measured whether Wnt signaling led to increased protease activity in the joint. Synovial overexpression of Wnt8a and Wnt16 led to canonical Wnt signaling in the cartilage, whereas overexpression of Wnt5a did not. Canonical Wnt signaling increased protease activity and induced cartilage damage shortly after overexpression. Specific blocking of the canonical Wnt signaling pathway with Dickkopf-1 reduced the Wnt-signaling-induced cartilage damage. By contrast, the noncanonical signaling Wnt5a did not cause cartilage lesions. Overexpression of WISP1, a downstream protein of canonical Wnt signaling, resulted in increased cartilage damage. In conclusion, our data show that canonical Wnts and WISP1, which we found overexpressed in the synovium during experimental OA, may conduce to OA pathology.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Cartilagem Articular/patologia , Osteoartrite/patologia , Peptídeo Hidrolases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Animais , Artrite Experimental , Cartilagem Articular/metabolismo , Linhagem Celular , Humanos , Joelho/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Proteínas Wnt/genética
19.
PLoS One ; 10(5): e0126687, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955417

RESUMO

BACKGROUND: Superparamagnetic Iron Oxide Nanoparticles (SPION) are used in diagnostic imaging of a variety of different diseases. For such in-vivo application, an additional coating with a polymer, for example polyvinyl alcohol (PVA), is needed to stabilize the SPION and prevent aggregation. As the particles are foreign to the body, reaction against the SPION could occur. In this study we investigated the effects that SPION may have on experimental arthritis after intra-articular (i.a.) or intravenous (i.v.) injection. METHODS: PVA-coated SPION were injected either i.a. (6 or 24 µg iron) or i.v. (100 µg or 1 mg iron) into naïve Toll-like receptor-4 deficient (TLR4-/-) or wild-type C57Bl/6 mice, or C57Bl/6 mice with antigen-induced arthritis. As control, some mice were injected with PVA or PBS. MR imaging was performed at 1 and 7 days after injection. Mice were sacrificed 2 hours and 1, 2, 7, 10 and 14 days after injection of the SPION, and RNA from synovium and liver was isolated for pro-inflammatory gene expression analysis. Serum cytokine measurements and whole knee joint histology were also performed. RESULTS: Injection of a high dose of SPION or PVA into naïve knee joints resulted in an immediate upregulation of pro-inflammatory gene expression in the synovium. A similar gene expression profile was observed after SPION or PVA injection into knee joints of TLR4-/- mice, indicating that this effect is not due to LPS contamination. Histological analysis of the knee joints also revealed synovial inflammation after SPION injection. Two hours after i.v. injection of SPION or PVA into naïve mice, an upregulation of pro-inflammatory gene expression was detected in the liver. Administration of SPION or PVA into arthritic mice via i.a. injection did not result in an upregulation in gene expression and also no additional effects were observed on histology. MR imaging and histology showed long-term retention of SPION in the inflamed joint. However, 14 days after the injections no long-term effects were evident for gene expression, histology or serum cytokine concentrations. CONCLUSIONS: Injection of SPION, either locally or systemically, gives an acute inflammatory response. In the long term, up to 14 days after the injection, while the SPION reside in the joint, no further activating effects of SPION were observed. Hence, we conclude that SPION do not aggravate arthritis and can therefore be used safely to detect joint inflammation by MR imaging.


Assuntos
Artrite Experimental/imunologia , Citocinas/metabolismo , Compostos Férricos/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Animais , Artrite Experimental/patologia , Citocinas/genética , Injeções Intra-Articulares , Injeções Intravenosas , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Camundongos , Álcool de Polivinil/química
20.
PLoS One ; 10(3): e0121123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822997

RESUMO

SCOPE: Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. METHODS AND RESULTS: Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-ß, and that anti-TGF-ß antibodies blocked Th17 differentiation. CONCLUSION: Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.


Assuntos
Indústria de Laticínios/normas , Vesículas Extracelulares/metabolismo , Leite/química , Leite/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Anticorpos/imunologia , Bovinos , Diferenciação Celular/imunologia , Feminino , Luciferases , Macrófagos/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Tetraspanina 30/metabolismo , Fator de Crescimento Transformador beta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA