Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5338, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087703

RESUMO

Tumor heterogeneity is a major cause of therapeutic resistance. Immunotherapy may exploit alternative vulnerabilities of drug-resistant cells, where tumor-specific human leukocyte antigen (HLA) peptide ligands are promising leads to invoke targeted anti-tumor responses. Here, we investigate the variability in HLA class I peptide presentation between different clonal cells of the same colorectal cancer patient, using an organoid system. While clone-specific differences in HLA peptide presentation were observed, broad inter-clone variability was even more prevalent (15-25%). By coupling organoid proteomics and HLA peptide ligandomics, we also found that tumor-specific ligands from DNA damage control and tumor suppressor source proteins were prominently presented by tumor cells, coinciding likely with the silencing of such cytoprotective functions. Collectively, these data illustrate the heterogeneous HLA peptide presentation landscape even within one individual, and hint that a multi-peptide vaccination approach against highly conserved tumor suppressors may be a viable option in patients with low tumor-mutational burden.


Assuntos
Neoplasias Colorretais/imunologia , Antígenos HLA/metabolismo , Organoides/imunologia , Apresentação de Antígeno , Linhagem Celular Tumoral , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Ligantes , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Organoides/metabolismo , Organoides/patologia , Proteoma/metabolismo , Transdução de Sinais , Análise de Célula Única , Serina-Treonina Quinases TOR/metabolismo
2.
Mol Cell Proteomics ; 19(10): 1677-1687, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32694122

RESUMO

Ion mobility separates molecules in the gas-phase based on their physico-chemical properties, providing information about their size as collisional cross-sections. The timsTOF Pro combines trapped ion mobility with a quadrupole, collision cell and a TOF mass analyzer, to probe ions at high speeds with on-the-fly fragmentation. Here, we show that on this platform ion mobility is beneficial for cross-linking MS (XL-MS). Cross-linking reagents covalently link amino acids in proximity, resulting in peptide pairs after proteolytic digestion. These cross-linked peptides are typically present at low abundance in the background of normal peptides, which can partially be resolved by using enrichable cross-linking reagents. Even with a very efficient enrichable cross-linking reagent, like PhoX, the analysis of cross-linked peptides is still hampered by the co-enrichment of peptides connected to a partially hydrolyzed reagent - termed mono-linked peptides. For experiments aiming to uncover protein-protein interactions these are unwanted byproducts. Here, we demonstrate that gas-phase separation by ion mobility enables the separation of mono-linked peptides from cross-linked peptide pairs. A clear partition between these two classes is observed at a CCS of 500 Å2 and a monoisotopic mass of 2 kDa, which can be used for targeted precursor selection. A total of 50-70% of the mono-linked peptides are prevented from sequencing, allowing the analysis to focus on sequencing the relevant cross-linked peptide pairs. In applications to both simple proteins and protein mixtures and a complete highly complex lysate this approach provides a substantial increase in detected cross-linked peptides.


Assuntos
Reagentes de Ligações Cruzadas/química , Espectrometria de Massas , Células HeLa , Humanos , Íons , Peptídeos/química , Padrões de Referência
3.
Anal Bioanal Chem ; 411(7): 1351-1363, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30710207

RESUMO

There is a growing interest for investigating endogenous peptides from human biofluids which may provide yet unknown functional benefits or provide an early indication of disease states as potential biomarkers. A major technical bottleneck in the investigation of endogenous peptides from body fluids, e.g., serum, urine, saliva, and milk, is that each of these fluids seems to require unique workflows for peptide extraction and analysis. Thus, protocols optimized for serum cannot be directly translated to milk. One biofluid that is readily available, but which has not been extensively explored, is human milk, whose analysis could contribute to our understanding of the immune development of the newborn infant. Due to the occurrence of highly abundant lipids, proteins, and saccharides, milk peptidomics requires dedicated sample preparation steps. The aim of this study was to develop a time and cost-efficient workflow for the analysis of the human milk peptidome, for which we compared peptide extraction methodologies and peptide fragmentation methods. A method using strong acid protein precipitation and analysis by collision-induced dissociation fragmentation was found to be superior to all other test methods, allowing us qualitative and quantitative detection of about 4000 endogenous human milk peptides in a total analysis time of just 18 h.


Assuntos
Proteínas do Leite/análise , Leite Humano/química , Peptídeos/análise , Sequência de Aminoácidos , Precipitação Química , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Extração Líquido-Líquido/métodos , Fragmentos de Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
4.
Anal Chem ; 89(6): 3318-3325, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28233997

RESUMO

Mass spectrometry (MS)-based proteomics workflows can crudely be classified into two distinct regimes, targeting either relatively small peptides (i.e., 0.7 kDa < Mw < 3.0 kDa) or small to medium sized intact proteins (i.e., 10 kDa < Mw < 30 kDa), respectively, termed bottom-up and top-down proteomics. Recently, a niche has started to be explored covering the analysis of middle-range peptides (i.e., 3.0 kDa < Mw < 10 kDa), aptly termed middle-down proteomics. Although middle-down proteomics can follow, in principle, a modular workflow similar to that of bottom-up proteomics, we hypothesized that each of these modules would benefit from targeted optimization to improve its overall performance in the analysis of middle-range sized peptides. Hence, to generate middle-range sized peptides from cellular lysates, we explored the use of the proteases Asp-N and Glu-C and a nonenzymatic acid induced cleavage. To increase the depth of the proteome, a strong cation exchange (SCX) separation, carefully tuned to improve the separation of longer peptides, combined with reversed phase-liquid chromatography (RP-LC) using columns packed with material possessing a larger pore size, was used. Finally, after evaluating the combination of potentially beneficial MS settings, we also assessed the peptide fragmentation techniques, including higher-energy collision dissociation (HCD), electron-transfer dissociation (ETD), and electron-transfer combined with higher-energy collision dissociation (EThcD), for characterization of middle-range sized peptides. These combined improvements clearly improve the detection and sequence coverage of middle-range peptides and should guide researchers to explore further how middle-down proteomics may lead to an improved proteome coverage, beneficial for, among other things, the enhanced analysis of (co-occurring) post-translational modifications.


Assuntos
Peptídeo Hidrolases/metabolismo , Peptídeos/análise , Proteômica , Células HeLa , Humanos , Espectrometria de Massas , Tamanho da Partícula , Peptídeos/metabolismo
5.
Cell Rep ; 18(1): 263-274, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052255

RESUMO

Diseases at the molecular level are complex and patient dependent, necessitating development of strategies that enable precision treatment to optimize clinical outcomes. Organoid technology has recently been shown to have the potential to recapitulate the in vivo characteristics of the original individual's tissue in a three-dimensional in vitro culture system. Here, we present a quantitative mass-spectrometry-based proteomic analysis and a comparative transcriptomic analysis of human colorectal tumor and healthy organoids derived, in parallel, from seven patients. Although gene and protein signatures can be derived to distinguish the tumor organoid population from healthy organoids, our data clearly reveal that each patient possesses a distinct organoid signature at the proteomic level. We demonstrate that a personalized patient-specific organoid proteome profile can be related to the diagnosis of a patient and with future development contribute to the generation of personalized therapies.


Assuntos
Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Variação Genética , Organoides/patologia , Proteoma/metabolismo , Proteômica/métodos , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Transcriptoma/genética , Via de Sinalização Wnt
6.
Sci Signal ; 6(272): rs9, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23612710

RESUMO

How cells recover from a DNA damage-induced arrest is currently poorly understood. We performed large-scale quantitative phosphoproteomics to identify changes in protein phosphorylation that occurred during recovery from arrest in the G2 phase of the cell cycle caused by DNA damage. We identified 154 proteins that were differentially phosphorylated, and systematic depletion of each of these differentially phosphorylated proteins by small interfering RNA (siRNA) identified at least 10 potential regulators of recovery. Astrin, a protein associated with the mitotic spindle, was among the potential regulators of recovery. We found that astrin controlled the abundance of the cell cycle regulator p53 during DNA damage-induced arrest. Cells in which astrin was depleted had decreased murine double minute 2 (MDM2) abundance and increased p53 at the later stages of the DNA damage response. Astrin was required for continued expression of genes encoding proteins that promote cell cycle progression in arrested cells. Thus, by controlling p53 abundance in cells recovering from DNA damage, astrin maintains the cells in a state competent to resume the cell cycle.


Assuntos
Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Fosfoproteínas/metabolismo , Linhagem Celular Tumoral , Humanos , Fosfoproteínas/genética , Fosforilação , Proteômica , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo
7.
Mol Cell Proteomics ; 8(5): 1016-28, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19119138

RESUMO

cAMP regulates cellular functions primarily by activating PKA. The involvement of PKAs in various signaling pathways occurring simultaneously in different cellular compartments necessitates stringent spatial and temporal regulation. This specificity is largely achieved by binding of PKA to protein scaffolds, whereby a distinct group of proteins called A kinase anchoring proteins (AKAPs) play a dominant role. AKAPs are a diverse family of proteins that all bind via a small PKA binding domain to the regulatory subunits of PKA. The binding affinities between PKA and several AKAPs can be different for different isoforms of the regulatory subunits of PKA. Here we employ a combination of affinity chromatography and mass spectrometry-based quantitative proteomics to investigate specificity in PKA-AKAP interactions. Three different immobilized cAMP analogs were used to enrich for PKA and its interacting proteins from several systems; HEK293 and RCC10 cells and rat lung and testis tissues. Stable isotope labeling was used to confidently identify and differentially quantify target proteins and their preferential binding affinity for the three different cAMP analogs. We were able to enrich all four isoforms of the regulatory subunits of PKA and concomitantly identify more than 10 AKAPs. A selective enrichment of the PKA RI isoforms could be achieved; which allowed us to unravel which AKAPs bind preferentially to the RI or RII regulatory domains of PKA. Of the twelve AKAPs detected, seven preferentially bound to RII, whereas the remaining five displayed at least dual specificity with a potential preference for RI. For some of these AKAPs our data provide the first insights into their specificity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/análise , AMP Cíclico/química , Subunidades Proteicas/análise , Resinas Sintéticas/química , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Cromatografia de Afinidade , AMP Cíclico/análogos & derivados , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Humanos , Isoenzimas/análise , Marcação por Isótopo , Pulmão/enzimologia , Metilação , Microesferas , Ligação Proteica , Proteômica , Ratos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA