Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
4.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768148

RESUMO

Chronic nasal carriage of Staphylococcus aureus (SA) has been shown to be significantly higher in GPA patients when compared to healthy subjects, as well as being associated with increased endonasal activity and disease relapse. The aim of this study was to investigate SA involvement in GPA by applying a network-based analysis (NBA) approach to publicly available nasal transcriptomic data. Using these data, our NBA pipeline generated a proteinase 3 (PR3) positive ANCA associated vasculitis (AAV) disease network integrating differentially expressed genes, dysregulated transcription factors (TFs), disease-specific genes derived from GWAS studies, drug-target and protein-protein interactions. The PR3+ AAV disease network captured genes previously reported to be dysregulated in AAV associated. A subnetwork focussing on interactions between SA virulence factors and enriched biological processes revealed potential mechanisms for SA's involvement in PR3+ AAV. Immunosuppressant treatment reduced differential expression and absolute TF activities in this subnetwork for patients with inactive nasal disease but not active nasal disease symptoms at the time of sampling. The disease network generated identified the key molecular signatures and highlighted the associated biological processes in PR3+ AAV and revealed potential mechanisms for SA to affect these processes.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Granulomatose com Poliangiite , Staphylococcus aureus Resistente à Meticilina , Doenças Nasais , Infecções Estafilocócicas , Humanos , Granulomatose com Poliangiite/genética , Granulomatose com Poliangiite/diagnóstico , Staphylococcus aureus/genética , Anticorpos Anticitoplasma de Neutrófilos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Mieloblastina
6.
J Pharmacokinet Pharmacodyn ; 49(6): 645-655, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36261775

RESUMO

Sepsis is a life-threatening condition driven by the dysregulation of the host immune response to an infection. The complex and interacting mechanisms underlying sepsis remain not fully understood. By integrating prior knowledge from literature using mathematical modelling techniques, we aimed to obtain a deeper mechanistic insight into sepsis pathogenesis and to evaluate promising novel therapeutic targets, with a focus on Toll-like receptor 4 (TLR4)-mediated pathways. A Boolean network of regulatory relationships was developed for key immune components associated with sepsis pathogenesis after TLR4 activation. Perturbation analyses were conducted to identify therapeutic targets associated with organ dysfunction or antibacterial activity. The developed model consisted of 42 nodes and 183 interactions. Perturbation analyses suggest that over-expression of tumour necrosis factor alpha (TNF-α) or inhibition of soluble receptor sTNF-R, tissue factor, and inflammatory cytokines (IFN-γ, IL-12) may lead to a reduced activation of organ dysfunction related endpoints. Over-expression of complement factor C3b and C5b led to an increase in the bacterial clearance related endpoint. We identified that combinatory blockade of IFN-γ and IL-10 may reduce the risk of organ dysfunction. Finally, we found that combining antibiotic treatment with IL-1ß targeted therapy may have the potential to decrease thrombosis. In summary, we demonstrate how existing biological knowledge can be effectively integrated using Boolean network analysis for hypothesis generation of potential treatment strategies and characterization of biomarker responses associated with the early inflammatory response in sepsis.


Assuntos
Sepse , Receptor 4 Toll-Like , Humanos , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/complicações , Sepse/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Farmacologia em Rede
7.
Br J Clin Pharmacol ; 88(12): 5420-5427, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921300

RESUMO

Clinical studies in healthy volunteers challenged with lipopolysaccharide (LPS), a constituent of the cell wall of Gram-negative bacteria, represent a key model to characterize the Toll-like receptor 4 (TLR4)-mediated inflammatory response. Here, we developed a mathematical modelling framework to quantitatively characterize the dynamics and inter-individual variability of multiple inflammatory biomarkers in healthy volunteer LPS challenge studies. Data from previously reported LPS challenge studies were used, which included individual-level time-course data for tumour necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8) and C-reactive protein (CRP). A one-compartment model with first-order elimination was used to capture the LPS kinetics. The relationships between LPS and inflammatory markers was characterized using indirect response (IDR) models. Delay differential equations were applied to quantify the delays in biomarker response profiles. For LPS kinetics, our estimates of clearance and volume of distribution were 35.7 L h-1 and 6.35 L, respectively. Our model adequately captured the dynamics of multiple inflammatory biomarkers. The time delay for the secretion of TNF-α, IL-6 and IL-8 were estimated to be 0.924, 1.46 and 1.48 h, respectively. A second IDR model was used to describe the induced changes of CRP in relation to IL-6, with a delayed time of 4.2 h. The quantitative models developed in this study can be used to inform design of clinical LPS challenge studies and may help to translate preclinical LPS challenge studies to humans.


Assuntos
Interleucina-8 , Lipopolissacarídeos , Humanos , Interleucina-6 , Fator de Necrose Tumoral alfa , Inflamação/induzido quimicamente , Inflamação/patologia , Biomarcadores , Proteína C-Reativa
8.
Antimicrob Agents Chemother ; 66(8): e0036622, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862740

RESUMO

Quantitative systems pharmacology (QSP) modeling of the host immune response against Mycobacterium tuberculosis can inform the rational design of host-directed therapies (HDTs). We aimed to develop a QSP framework to evaluate the effects of metformin-associated autophagy induction in combination with antibiotics. A QSP framework for autophagy was developed by extending a model for host immune response to include adenosine monophosphate-activated protein kinase (AMPK)-mTOR-autophagy signaling. This model was combined with pharmacokinetic-pharmacodynamic models for metformin and antibiotics against M. tuberculosis. We compared the model predictions to mice infection experiments and derived predictions for the pathogen- and host-associated dynamics in humans treated with metformin in combination with antibiotics. The model adequately captured the observed bacterial load dynamics in mice M. tuberculosis infection models treated with metformin. Simulations for adjunctive metformin therapy in newly diagnosed patients suggested a limited yet dose-dependent effect of metformin on reduction of the intracellular bacterial load when the overall bacterial load is low, late during antibiotic treatment. We present the first QSP framework for HDTs against M. tuberculosis, linking cellular-level autophagy effects to disease progression and adjunctive HDT treatment response. This framework may be extended to guide the design of HDTs against M. tuberculosis.


Assuntos
Metformina , Mycobacterium tuberculosis , Tuberculose , Animais , Antibacterianos/farmacologia , Autofagia , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Farmacologia em Rede , Tuberculose/microbiologia
10.
Clin Pharmacol Ther ; 112(2): 210-223, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34656074

RESUMO

Changes that accompany older age can alter the pharmacokinetics (PK), pharmacodynamics (PD), and likelihood of adverse effects (AEs) of a drug. However, older adults, especially the oldest or those with multiple chronic health conditions, polypharmacy, or frailty, are often under-represented in clinical trials of new drugs. Deficits in the current conduct of clinical evaluation of drugs for older adults and potential steps to fill those knowledge gaps are presented in this communication. The most important step is to increase clinical trial enrollment of older adults who are representative of the target treatment population. Unnecessary eligibility criteria should be eliminated. Physical and financial barriers to participation should be removed. Incentives could be created for inclusion of older adults. Enrollment goals should be established based on intended treatment indications, prevalence of the condition, and feasibility. Relevant clinical pharmacology data need to be obtained early enough to guide dosing and reduce risk for participation of older adults. Relevant PK and PD data as well as patient-centered outcomes should be measured during trials. Trial data should be analyzed for differences in PK, PD, effectiveness, and safety arising from differences in age or from the presence of conditions common in older adults. Postmarket evaluations with real-world evidence and drug labeling updates throughout the product lifecycle reflecting new knowledge are also needed. A comprehensive plan is needed to ensure adequate evaluation of the safety and effectiveness of drugs in older adults.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Polimedicação , Idoso , Avaliação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , Prevalência
11.
Clin Pharmacol Ther ; 110(2): 346-360, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33559152

RESUMO

Treatment failure of antibiotic therapy due to insufficient efficacy or occurrence of toxicity is a major clinical challenge, and is expected to become even more urgent with the global rise of antibiotic resistance. Strategies to optimize treatment in individual patients are therefore of crucial importance. Currently, therapeutic drug monitoring plays an important role in optimizing antibiotic exposure to reduce treatment failure and toxicity. Biomarker-based strategies may be a powerful tool to further quantify and monitor antibiotic treatment response, and reduce variation in treatment response between patients. Host response biomarkers, such as CRP, procalcitonin, IL-6, and presepsin, could potentially carry significant information to be utilized for treatment individualization. To achieve this, the complex interactions among immune system, pathogen, drug, and biomarker need to be better understood and characterized. The purpose of this tutorial is to discuss the use and evidence of currently available biomarker-based approaches to inform antibiotic treatment. To this end, we also included a discussion on how treatment response biomarker data from preclinical, healthy volunteer, and patient-based studies can be further characterized using pharmacometric and system pharmacology based modeling approaches. As an illustrative example of how such modeling strategies can be used, we describe a case study in which we quantitatively characterize procalcitonin dynamics in relation to antibiotic treatments in patients with sepsis.


Assuntos
Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Monitoramento de Medicamentos/métodos , Mediadores da Inflamação/sangue , Fatores Etários , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Biomarcadores , Proteína C-Reativa/análise , Voluntários Saudáveis , Humanos , Interleucina-6/sangue , Receptores de Lipopolissacarídeos/sangue , Lipopolissacarídeos/farmacologia , Taxa de Depuração Metabólica , Modelos Biológicos , Fragmentos de Peptídeos/sangue , Pró-Calcitonina/sangue
12.
Clin Pharmacol Ther ; 109(3): 605-618, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32686076

RESUMO

Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno-oncology (IO) the aim is to direct the patient's own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD-L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug-development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds' pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies.


Assuntos
Alergia e Imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desenvolvimento de Medicamentos , Inibidores de Checkpoint Imunológico/uso terapêutico , Oncologia , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Biologia de Sistemas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Simulação por Computador , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacocinética , Modelos Imunológicos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral
13.
J Pharmacokinet Pharmacodyn ; 47(5): 513-526, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710210

RESUMO

A modeling and simulation approach was used for quantitative comparison of a new generation HER2 antibody drug conjugate (ADC, PF-06804103) with trastuzumab-DM1 (T-DM1). To compare preclinical efficacy, the pharmacokinetic (PK)/pharmacodynamic (PD) relationship of PF-06804103 and T-DM1 was determined across a range of mouse tumor xenograft models, using a tumor growth inhibition model. The tumor static concentration was assigned as the minimal efficacious concentration. PF-06804103 was concluded to be more potent than T-DM1 across cell lines studied. TSCs ranged from 1.0 to 9.8 µg/mL (n = 7) for PF-06804103 and from 4.7 to 29 µg/mL (n = 5) for T-DM1. Two experimental models which were resistant to T-DM1, responded to PF-06804103 treatment. A mechanism-based target mediated drug disposition (TMDD) model was used to predict the human PK of PF-06804103. This model was constructed and validated based on T-DM1 which has non-linear PK at doses administered in the clinic, driven by binding to shed HER2. Non-linear PK is predicted for PF-06804103 in the clinic and is dependent upon circulating HER2 extracellular domain (ECD) concentrations. The models were translated to human and suggested greater efficacy for PF-06804103 compared to T-DM1. In conclusion, a fit-for-purpose translational PK/PD strategy for ADCs is presented and used to compare a new generation HER2 ADC with T-DM1.


Assuntos
Ado-Trastuzumab Emtansina/farmacocinética , Antineoplásicos Imunológicos/farmacocinética , Imunoconjugados/farmacocinética , Neoplasias/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Administração Intravenosa , Ado-Trastuzumab Emtansina/administração & dosagem , Animais , Antineoplásicos Imunológicos/administração & dosagem , Linhagem Celular Tumoral , Simulação por Computador , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoconjugados/administração & dosagem , Macaca fascicularis , Masculino , Camundongos , Modelos Biológicos , Neoplasias/patologia , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Clin Pharmacol Ther ; 108(3): 528-541, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579234

RESUMO

Bispecific antibodies (bsAbs) have become an integral component of the therapeutic research strategy to treat cancer. In addition to clinically validated immune cell re-targeting, bsAbs are being designed for tumor targeting and as dual immune modulators. Explorative preclinical and emerging clinical data indicate potential for enhanced efficacy and reduced systemic toxicity. However, bsAbs are a complex modality with challenges to overcome in early clinical trials, including selection of relevant starting doses using a minimal anticipated biological effect level approach, and predicting efficacious dose despite nonintuitive dose response relationships. Multiple factors can contribute to variability in the clinic, including differences in functional affinity due to avidity, receptor expression, effector to target cell ratio, and presence of soluble target. Mechanistic modeling approaches are a powerful integrative tool to understand the complexities and aid in clinical translation, trial design, and prediction of regimens and strategies to reduce dose limiting toxicities of bsAbs. In this tutorial, the use of mechanistic modeling to impact decision making for bsAbs is presented and illustrated using case study examples.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Técnicas de Apoio para a Decisão , Desenvolvimento de Medicamentos , Modelos Teóricos , Neoplasias/tratamento farmacológico , Animais , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/farmacocinética , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/farmacocinética , Tomada de Decisão Clínica , Simulação por Computador , Cálculos da Dosagem de Medicamento , Humanos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/patologia , Biologia de Sistemas
15.
Clin Pharmacol Ther ; 107(4): 858-870, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31955413

RESUMO

Application of contemporary molecular biology techniques to clinical samples in oncology resulted in the accumulation of unprecedented experimental data. These "omics" data are mined for discovery of therapeutic target combinations and diagnostic biomarkers. It is less appreciated that omics resources could also revolutionize development of the mechanistic models informing clinical pharmacology quantitative decisions about dose amount, timing, and sequence. We discuss the integration of omics data to inform mechanistic models supporting drug development in immuno-oncology. To illustrate our arguments, we present a minimal clinical model of the Cancer Immunity Cycle (CIC), calibrated for non-small cell lung carcinoma using tumor microenvironment composition inferred from transcriptomics of clinical samples. We review omics data resources, which can be integrated to parameterize mechanistic models of the CIC. We propose that virtual trial simulations with clinical Quantitative Systems Pharmacology platforms informed by omics data will be making increasing impact in the development of cancer immunotherapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Coleta de Dados/métodos , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Oncologia/métodos , Farmacologia Clínica/métodos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Coleta de Dados/estatística & dados numéricos , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/estatística & dados numéricos , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunoterapia/estatística & dados numéricos , Neoplasias Pulmonares/imunologia , Oncologia/estatística & dados numéricos , Farmacologia Clínica/estatística & dados numéricos
17.
Artigo em Inglês | MEDLINE | ID: mdl-31674729

RESUMO

The substantial progress made in the basic sciences of the brain has yet to be adequately translated to successful clinical therapeutics to treat central nervous system (CNS) diseases. Possible explanations include the lack of quantitative and validated biomarkers, the subjective nature of many clinical endpoints, and complex pharmacokinetic/pharmacodynamic relationships, but also the possibility that highly selective drugs in the CNS do not reflect the complex interactions of different brain circuits. Although computational systems pharmacology modeling designed to capture essential components of complex biological systems has been increasingly accepted in pharmaceutical research and development for oncology, inflammation, and metabolic disorders, the uptake in the CNS field has been very modest. In this article, a cross-disciplinary group with representatives from academia, pharma, regulatory, and funding agencies make the case that the identification and exploitation of CNS therapeutic targets for drug discovery and development can benefit greatly from a system and network approach that can span the gap between molecular pathways and the neuronal circuits that ultimately regulate brain activity and behavior. The National Institute of Neurological Disorders and Stroke (NINDS), in collaboration with the National Institute on Aging (NIA), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA), and National Center for Advancing Translational Sciences (NCATS), convened a workshop to explore and evaluate the potential of a quantitative systems pharmacology (QSP) approach to CNS drug discovery and development. The objective of the workshop was to identify the challenges and opportunities of QSP as an approach to accelerate drug discovery and development in the field of CNS disorders. In particular, the workshop examined the potential for computational neuroscience to perform QSP-based interrogation of the mechanism of action for CNS diseases, along with a more accurate and comprehensive method for evaluating drug effects and optimizing the design of clinical trials. Following up on an earlier white paper on the use of QSP in general disease mechanism of action and drug discovery, this report focuses on new applications, opportunities, and the accompanying limitations of QSP as an approach to drug development in the CNS therapeutic area based on the discussions in the workshop with various stakeholders.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Animais , Humanos , Farmacologia/métodos , Biologia de Sistemas
18.
AAPS J ; 21(6): 106, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31512089

RESUMO

Thorough exploration of alternative dosing frequencies is often not performed in conventional pharmacometrics approaches. Quantitative systems pharmacology (QSP) can provide novel insights into optimal dosing regimen and drug behaviors which could add a new dimension to the design of novel treatments. However, methods for such an approach are currently lacking. Recently, we illustrated the utility of frequency-domain response analysis (FdRA), an analytical method used in control engineering, using several generic pharmacokinetic-pharmacodynamic case studies. While FdRA is not applicable to models harboring ever increasing variables such as those describing tumor growth, studying such models in the frequency domain provides valuable insight into optimal dosing frequencies. Through the analysis of three distinct tumor growth models (cell cycle-specific, metronomic, and acquired resistance), we demonstrate the application of a simulation-based analysis in the frequency domain to optimize cancer treatments. We study the response of tumor growth to dosing frequencies while simultaneously examining treatment safety, and found for all three models that above a certain dosing frequency, tumor size is insensitive to an increase in dosing frequency, e.g., for the cell cycle-specific model, one dose per 3 days, and an hourly dose yield the same reduction of tumor size to 3% of the initial size after 1 year of treatment. Additionally, we explore the effect of drug elimination rate changes on the tumor growth response. In summary, we show that the frequency-domain view of three models of tumor growth dynamics can help in optimizing drug dosing regimen to improve treatment success.


Assuntos
Administração Metronômica , Antineoplásicos/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Antineoplásicos/metabolismo , Ciclo Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Neoplasias/metabolismo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia
19.
20.
AAPS J ; 21(4): 66, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31119428

RESUMO

CD3 bispecific antibody constructs recruit cytolytic T cells to kill tumor cells, offering a potent approach to treat cancer. T cell activation is driven by the formation of a trimolecular complex (trimer) between drugs, T cells, and tumor cells, mimicking an immune synapse. A translational quantitative systems pharmacology (QSP) model is proposed for CD3 bispecific molecules capable of predicting trimer concentration and linking it to tumor cell killing. The model was used to quantify the pharmacokinetic (PK)/pharmacodynamic (PD) relationship of a CD3 bispecific targeting P-cadherin (PF-06671008). It describes the disposition of PF-06671008 in the central compartment and tumor in mouse xenograft models, including binding to target and T cells in the tumor to form the trimer. The model incorporates T cell distribution to the tumor, proliferation, and contraction. PK/PD parameters were estimated for PF-06671008 and a tumor stasis concentration (TSC) was calculated as an estimate of minimum efficacious trimer concentration. TSC values ranged from 0.0092 to 0.064 pM across mouse tumor models. The model was translated to the clinic and used to predict the disposition of PF-06671008 in patients, including the impact of binding to soluble P-cadherin. The predicted terminal half-life of PF-06671008 in the clinic was approximately 1 day, and P-cadherin expression and number of T cells in the tumor were shown to be sensitive parameters impacting clinical efficacy. A translational QSP model is presented for CD3 bispecific molecules, which integrates in silico, in vitro and in vivo data in a mechanistic framework, to quantify and predict efficacy across species.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos/farmacologia , Complexo CD3/imunologia , Caderinas/metabolismo , Modelos Biológicos , Animais , Anticorpos Biespecíficos/sangue , Anticorpos Biespecíficos/farmacocinética , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Células HCT116 , Humanos , Imunoterapia , Ativação Linfocitária , Macaca fascicularis , Camundongos SCID , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Pesquisa Translacional Biomédica , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA