Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328115

RESUMO

KRAS is a small GTPase, ubiquitously expressed in mammalian cells, that functions as a molecular switch to regulate cell proliferation and differentiation. Oncogenic mutations that render KRAS constitutively active occur frequently in human cancers. KRAS must localize to the plasma membrane (PM) for biological activity. KRAS PM binding is mediated by interactions of the KRAS membrane anchor with phosphatidylserine (PtdSer), therefore, depleting PM PtdSer content abrogates KRAS PM binding and oncogenic function. From a genome-wide siRNA screen to search for genes that regulate KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatase family members: myotubularin-related (MTMR) proteins 2, 3, 4 and 7. Here we show that knockdown of MTMR 2/3/4/7 expression disrupts KRAS PM interactions. The molecular mechanism involves depletion of PM PI 4-phosphate (PI4P) levels, which in turn disrupts the subcellular localization and operation of oxysterol-binding protein related protein (ORP) 5, a PtdSer lipid transfer protein that maintains PM PtdSer content. Concomitantly, silencing MTMR 2/3/4/7 expression elevates PM levels of PI3P and reduces PM and total cellular levels of PtdSer. In summary we propose that the PI 3-phosphatase activity provided by MTMR proteins is required to generate PM PI for the synthesis of PM PI4P, which in turn, promotes the PM localization of PtdSer and KRAS.

2.
Nat Commun ; 14(1): 465, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709325

RESUMO

Oncogenic KRAS expression generates a metabolic dependency on aerobic glycolysis, known as the Warburg effect. We report an effect of increased glycolytic flux that feeds into glycosphingolipid biosynthesis and is directly linked to KRAS oncogenic function. High resolution imaging and genetic approaches show that a defined subset of outer leaflet glycosphingolipids, including GM3 and SM4, is required to maintain KRAS plasma membrane localization, with GM3 engaging in cross-bilayer coupling to maintain inner leaflet phosphatidylserine content. Thus, glycolysis is critical for KRAS plasma membrane localization and nanoscale spatial organization. Reciprocally oncogenic KRAS selectively upregulates cellular content of these same glycosphingolipids, whose depletion in turn abrogates KRAS oncogenesis in pancreatic cancer models. Our findings expand the role of the Warburg effect beyond ATP generation and biomass building to high-level regulation of KRAS function. The positive feedforward loop between oncogenic KRAS signaling and glycosphingolipid synthesis represents a vulnerability with therapeutic potential.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Glicólise , Glicoesfingolipídeos/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903667

RESUMO

KRAS is mutated in 90% of human pancreatic ductal adenocarcinomas (PDACs). To function, KRAS must localize to the plasma membrane (PM) via a C-terminal membrane anchor that specifically engages phosphatidylserine (PtdSer). This anchor-binding specificity renders KRAS-PM localization and signaling capacity critically dependent on PM PtdSer content. We now show that the PtdSer lipid transport proteins, ORP5 and ORP8, which are essential for maintaining PM PtdSer levels and hence KRAS PM localization, are required for KRAS oncogenesis. Knockdown of either protein, separately or simultaneously, abrogated growth of KRAS-mutant but not KRAS-wild-type pancreatic cancer cell xenografts. ORP5 or ORP8 knockout also abrogated tumor growth in an immune-competent orthotopic pancreatic cancer mouse model. Analysis of human datasets revealed that all components of this PtdSer transport mechanism, including the PM-localized EFR3A-PI4KIIIα complex that generates phosphatidylinositol-4-phosphate (PI4P), and endoplasmic reticulum (ER)-localized SAC1 phosphatase that hydrolyzes counter transported PI4P, are significantly up-regulated in pancreatic tumors compared to normal tissue. Taken together, these results support targeting PI4KIIIα in KRAS-mutant cancers to deplete the PM-to-ER PI4P gradient, reducing PM PtdSer content. We therefore repurposed the US Food and Drug Administration-approved hepatitis C antiviral agent, simeprevir, as a PI4KIIIα inhibitor In a PDAC setting. Simeprevir potently mislocalized KRAS from the PM, reduced the clonogenic potential of pancreatic cancer cell lines in vitro, and abrogated the growth of KRAS-dependent tumors in vivo with enhanced efficacy when combined with MAPK and PI3K inhibitors. We conclude that the cellular ER-to-PM PtdSer transport mechanism is essential for KRAS PM localization and oncogenesis and is accessible to therapeutic intervention.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Receptores de Esteroides/metabolismo , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Esteroides/genética , Simeprevir/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int Endod J ; 54(10): 1892-1901, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34081782

RESUMO

AIM: To investigate (1) the cytotoxic potential of the brown precipitate (BP) formed with sodium hypochlorite (NaOCl) and chlorhexidine gluconate (CHX), using both a small animal model of Caenorhabditis elegans (C. elegans) and cultured human gingival fibroblasts; and (2) the chemical composition of BP using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). METHODOLOGY: Brown precipitate was obtained by mixing equal volumes of 6% NaOCl and 2% CHX and separating the BP from clear supernatant by centrifugation. The brown precipitate was weighed and solubilized in dimethyl sulfoxide for cytotoxicity experiments. The cytotoxic effect of BP was assessed using C. elegans larvae and primary immortalized human gingival fibroblasts-hTERT (hTERT-hNOF) cells. Various dilutions of BP (25 ng/µL-150 ng/µL), supernatant (0.15% v/v), NaOCl (1:100-1:1000 dilutions of 6% NaOCl) or CHX (1:500-1:1000 dilutions of 2% CHX) along with vehicle control (0.5% v/v ethanol and 0.15% v/v DMSO) or untreated control (growth medium) were tested on C. elegans larvae and hTERT-hNOF cells. Viability was assessed in C. elegans larvae using stereomicroscopy and in hTERT-hNOF cells using dehydrogenase-based colorimetric assay. ToF-SIMS was used to assess the chemical composition of BP in comparison with CHX and para-chloroaniline (PCA). The C. elegans and cell line data were analysed using Log-Rank test and Student's t-test, respectively (p < .05). RESULTS: BP-75 ng/µL and BP-150 ng/µL were significantly more toxic to C. elegans larvae than the untreated, vehicle, supernatant or CHX treatment groups (p < .0001). Similarly, in hTERT-hNOF cells, BP-50 ng/µL, BP-75 ng/µL and BP-150 ng/µL induced significant cytotoxicity within 2 h compared with untreated, vehicle, supernatant and CHX treatments (p < .05). ToF-SIMS analysis of BP revealed ion composition characteristic of both CHX and the carcinogen PCA. CONCLUSIONS: Brown precipitate was toxic in both C. elegans larvae and hTERT-hNOF cells. The ToF-SIMS analysis of BP revealed ions characteristic of CHX and PCA that could account for the toxicities observed in C. elegans larvae and human gingival fibroblasts. Because of the insoluble and toxic nature of BP, consecutive use of CHX and NaOCl irrigants should be avoided in root canal treatment.


Assuntos
Irrigantes do Canal Radicular , Hipoclorito de Sódio , Animais , Caenorhabditis elegans , Clorexidina/análogos & derivados , Clorexidina/toxicidade , Humanos , Hipoclorito de Sódio/toxicidade
5.
Eur J Med Chem ; 217: 113381, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756124

RESUMO

KRAS plays an essential role in regulating cell proliferation, differentiation, migration and survival. Mutated KRAS is a major driver of malignant transformation in multiple human cancers. We showed previously that fendiline (6) is an effective inhibitor of KRAS plasma membrane (PM) localization and function. In this study, we designed, synthesized and evaluated a series of new fendiline analogs to optimize its drug properties. Systemic structure-activity relationship studies by scaffold repurposing led to the discovery of several more active KRAS PM localization inhibitors such as compounds 12f (NY0244), 12h (NY0331) and 22 (NY0335) which exhibit nanomolar potencies. These compounds inhibited oncogenic KRAS-driven cancer cell proliferation at single-digit micromolar concentrations in vitro. In vivo studies in a xenograft model of pancreatic cancer revealed that 12h and 22 suppressed oncogenic KRAS-expressing MiaPaCa-2 tumor growth at a low dose range of 1-5 mg/kg with no vasodilatory effects, indicating their potential as chemical probes and anticancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fendilina/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Fendilina/análogos & derivados , Fendilina/química , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Relação Estrutura-Atividade
6.
J Vis Exp ; (164)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33074252

RESUMO

The changes in the plasma membrane localization of the epidermal growth factor receptor (EGFR) and its downstream effector RAS have been implicated in several diseases including cancer. The free-living nematode C. elegans possesses an evolutionary and functionally conserved EGFR-RAS-ERK MAP signal cascade which is central for the development of the vulva. Gain of function mutations in RAS homolog LET-60 and EGFR homolog LET-23 induce the generation of visible nonfunctional ectopic pseudovulva along the ventral body wall of these worms. Previously, the multivulval (Muv) phenotype in these worms has been shown to be inhibited by small chemical molecules. Here we describe a protocol for using the worm in a liquid-based assay to identify inhibitors that abolish the activities of EGFR and RAS proteins. Using this assay, we show R-fendiline, an indirect inhibitor of K-RAS, suppresses the Muv phenotype expressed in the let-60(n1046) and let-23(sa62) mutant worms. The assay is simple, inexpensive, is not time consuming to setup, and can be used as an initial platform for the discovery of anticancer therapeutics.


Assuntos
Caenorhabditis elegans , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas ras/antagonistas & inibidores , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Feminino , Humanos , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo
7.
Life Sci Alliance ; 2(5)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451509

RESUMO

The small GTPase KRAS, which is frequently mutated in human cancers, must be localized to the plasma membrane (PM) for biological activity. We recently showed that the KRAS C-terminal membrane anchor exhibits exquisite lipid-binding specificity for select species of phosphatidylserine (PtdSer). We, therefore, investigated whether reducing PM PtdSer content is sufficient to abrogate KRAS oncogenesis. Oxysterol-related binding proteins ORP5 and ORP8 exchange PtdSer synthesized in the ER for phosphatidyl-4-phosphate synthesized in the PM. We show that depletion of ORP5 or ORP8 reduced PM PtdSer levels, resulting in extensive mislocalization of KRAS from the PM. Concordantly, ORP5 or ORP8 depletion significantly reduced proliferation and anchorage-independent growth of multiple KRAS-dependent cancer cell lines, and attenuated KRAS signaling in vivo. Similarly, functionally inhibiting ORP5 and ORP8 by inhibiting PI4KIIIα-mediated synthesis of phosphatidyl-4-phosphate at the PM selectively inhibited the growth of KRAS-dependent cancer cell lines over normal cells. Inhibiting KRAS function through regulating PM lipid PtdSer content may represent a viable strategy for KRAS-driven cancers.


Assuntos
Membrana Celular/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores de Esteroides/antagonistas & inibidores , Animais , Sítios de Ligação/efeitos dos fármacos , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Cães , Retículo Endoplasmático/metabolismo , Células HCT116 , Humanos , Células Madin Darby de Rim Canino , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Esteroides/metabolismo , Transdução de Sinais
8.
Mol Cell Biol ; 38(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158292

RESUMO

K-Ras must localize to the plasma membrane (PM) for biological activity. We show here that multiple acid sphingomyelinase (ASM) inhibitors, including tricyclic antidepressants, mislocalized phosphatidylserine (PtdSer) and K-RasG12V from the PM, resulting in abrogation of K-RasG12V signaling and potent, selective growth inhibition of mutant K-Ras-transformed cancer cells. Concordantly, in nude mice, the ASM inhibitor fendiline decreased the rate of growth of oncogenic K-Ras-expressing MiaPaCa-2 tumors but had no effect on the growth of the wild-type K-Ras-expressing BxPC-3 tumors. ASM inhibitors also inhibited activated LET-60 (a K-Ras ortholog) signaling in Caenorhabditis elegans, as evidenced by suppression of the induced multivulva phenotype. Using RNA interference against C. elegans genes encoding other enzymes in the sphingomyelin (SM) biosynthetic pathway, we identified 14 enzymes whose knockdown strongly or moderately suppressed the LET-60 multivulva phenotype. In mammalian cells, pharmacological agents that target these enzymes all depleted PtdSer from the PM and caused K-RasG12V mislocalization. These effects correlated with changes in SM levels or subcellular distribution. Selected compounds, including sphingosine kinase inhibitors, potently inhibited the proliferation of oncogenic K-Ras-expressing pancreatic cancer cells. In conclusion, these results show that normal SM metabolism is critical for K-Ras function, which may present therapeutic options for the treatment of K-Ras-driven cancers.


Assuntos
Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais , Esfingomielinas/genética , Esfingomielinas/metabolismo , Proteínas ras/metabolismo
9.
FEMS Microbiol Lett ; 286(2): 249-56, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18647359

RESUMO

The tobacco hornworm, Manduca sexta, is a model lepidopteran insect used to study the pathogenic and mutualistic phases of entomopathogenic nematodes (EPNs) and their bacterial symbionts. While intestinal microbial communities could potentially compete with the EPN and its bacterial partner for nutrient resources of the insect, the microbial gut community had not been characterized previously. Here, we show that the midgut of M. sexta raised on an artificial diet contained mostly Gram-positive cocci and coryneforms including Staphylococcus, Pediococcus, Micrococcus and Corynebacterium. Major perturbation in the gut community was observed on addition of antibiotics to the diet. Paenibacillus and several Proteobacteria such as Methylobacterium, Sphingomonas and Acinetobacter were primary genera identified under these conditions. Furthermore, the reproduction of the nematode Steinernema carpocapsae was less efficient, and the level of nematode colonization by its symbiont Xenorhabdus nematophila reduced, in insects reared on a diet containing antibiotics. The effect of antibiotics and perturbation of gut microbiota on nematode reproduction is discussed.


Assuntos
Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Biodiversidade , Trato Gastrointestinal/microbiologia , Manduca/microbiologia , Reprodução/efeitos dos fármacos , Rabditídios/efeitos dos fármacos , Animais , Bactérias/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA