Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 132505, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768911

RESUMO

Proteases, essential regulators of plant stress responses, remain enigmatic in their precise functional roles. By employing activity-based probes for real-time monitoring, this study aimed to delve into protease activities in Chlamydomonas reinhardtii exposed to oxidative stress induced by hydrogen peroxide. However, our work revealed that the activity-based probes strongly labelled three non-proteolytic proteins-PsbO, PsbP, and PsbQ-integral components of photosystem II's oxygen-evolving complex. Subsequent biochemical assays and mass spectrometry experiments revealed the involvement of CrCEP1, a previously uncharacterized papain-like cysteine protease, as the catalyst of this labelling reaction. Further experiments with recombinant CrCEP1 and PsbO proteins replicated the reaction in vitro. Our data unveiled that endopeptidase CrCEP1 also has transpeptidase activity, ligating probes and peptides to the N-termini of Psb proteins, thereby expanding the repertoire of its enzymatic activities. The hitherto unknown transpeptidase activity of CrCEP1, working in conjunction with its proteolytic activity, unveils putative complex and versatile roles for proteases in cellular processes during stress responses.

2.
Plant Cell Physiol ; 65(1): 128-141, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37924215

RESUMO

Glutathione transferases (GSTs) represent a large and diverse enzyme family involved in the detoxification of small molecules by glutathione conjugation in crops, weeds and model plants. In this study, we introduce an easy and quick assay for photoaffinity labeling of GSTs to study GSTs globally in various plant species. The small-molecule probe contains glutathione, a photoreactive group and a minitag for coupling to reporter tags via click chemistry. Under UV irradiation, this probe quickly and robustly labels GSTs in crude protein extracts of different plant species. Purification and mass spectrometry (MS) analysis of labeled proteins from Arabidopsis identified 10 enriched GSTs from the Phi(F) and Tau(U) classes. Photoaffinity labeling of GSTs demonstrated GST induction in wheat seedlings upon treatment with safeners and in Arabidopsis leaves upon infection with avirulent bacteria. Treatment of Arabidopsis with salicylic acid (SA) analog benzothiadiazole (BTH) induces GST labeling independent of NPR1, the master regulator of SA. Six Phi- and Tau-class GSTs that are induced upon BTH treatment were identified, and their labeling was confirmed upon transient overexpression. These data demonstrate that GST photoaffinity labeling is a useful approach to studying GST induction in crude extracts of different plant species upon different types of stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Salicílico/farmacologia , Glutationa/metabolismo
3.
New Phytol ; 241(1): 394-408, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36866975

RESUMO

The extracellular space of plant tissues contains hundreds of hydrolases that might harm colonising microbes. Successful pathogens may suppress these hydrolases to enable disease. Here, we report the dynamics of extracellular hydrolases in Nicotiana benthamiana upon infection with Pseudomonas syringae. Using activity-based proteomics with a cocktail of biotinylated probes, we simultaneously monitored 171 active hydrolases, including 109 serine hydrolases (SHs), 49 glycosidases (GHs) and 13 cysteine proteases (CPs). The activity of 82 of these hydrolases (mostly SHs) increases during infection, while the activity of 60 hydrolases (mostly GHs and CPs) is suppressed during infection. Active ß-galactosidase-1 (BGAL1) is amongst the suppressed hydrolases, consistent with production of the BGAL1 inhibitor by P. syringae. One of the other suppressed hydrolases, the pathogenesis-related NbPR3, decreases bacterial growth when transiently overexpressed. This is dependent on its active site, revealing a role for NbPR3 activity in antibacterial immunity. Despite being annotated as a chitinase, NbPR3 does not possess chitinase activity and contains an E112Q active site substitution that is essential for antibacterial activity and is present only in Nicotiana species. This study introduces a powerful approach to reveal novel components of extracellular immunity, exemplified by the discovery of the suppression of neo-functionalised Nicotiana-specific antibacterial NbPR3.


Assuntos
Quitinases , Hidrolases , Proteômica , Nicotiana , Pseudomonas syringae , Doenças das Plantas/microbiologia
4.
Physiol Plant ; 175(5): e13993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882288

RESUMO

The herbicides glyphosate and pyrithiobac inhibit the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid biosynthetic pathway and acetolactate synthase (ALS) in the branched-chain amino acid biosynthetic pathway, respectively. Here we characterise the protease activity profiles of a sensitive (S), a glyphosate-resistant (GR) and a multiple-resistant (MR) population of Amaranthus palmeri in response to glyphosate and pyrithiobac. Amino acid accumulation and cysteine protease activities were induced with both herbicides in the S population and with pyrithiobac in the GR population, suggesting that the increase in cysteine proteases is responsible for the increased degradation of the available proteins and the observed increase in free amino acids. Herbicides did not induce any changes in the proteolytic activities in the populations with target-site resistance, indicating that this effect was only induced in sensitive plants.


Assuntos
Amaranthus , Cisteína Proteases , Herbicidas , Resistência a Herbicidas , Amaranthus/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Cisteína Proteases/metabolismo , Cisteína Proteases/farmacologia
5.
Front Plant Sci ; 14: 1140101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051076

RESUMO

To successfully colonize the host, phytopathogens have developed a large repertoire of components to both combat the host plant defense mechanisms and to survive in adverse environmental conditions. Microbial proteases are predicted to be crucial components of these systems. In the present work, we aimed to identify active secreted proteases from the oomycete Aphanomyces euteiches, which causes root rot diseases on legumes. Genome mining and expression analysis highlighted an overrepresentation of microbial tandemly repeated proteases, which are upregulated during host infection. Activity Based Protein Profiling and mass spectrometry (ABPP-MS) on apoplastic fluids isolated from pea roots infected by the pathogen led to the identification of 35 active extracellular microbial proteases, which represents around 30% of the genes expressed encoding serine and cysteine proteases during infection. Notably, eight of the detected active secreted proteases carry an additional C-terminal domain. This study reveals novel active modular extracellular eukaryotic proteases as potential pathogenicity factors in Aphanomyces genus.

6.
ACS Chem Biol ; 18(5): 1076-1088, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37115018

RESUMO

Plant phytohormone pathways are regulated by an intricate network of signaling components and modulators, many of which still remain unknown. Here, we report a forward chemical genetics approach for the identification of functional SA agonists in Arabidopsis thaliana that revealed Neratinib (Ner), a covalent pan-HER kinase inhibitor drug in humans, as a modulator of SA signaling. Instead of a protein kinase, chemoproteomics unveiled that Ner covalently modifies a surface-exposed cysteine residue of Arabidopsis epoxide hydrolase isoform 7 (AtEH7), thereby triggering its allosteric inhibition. Physiologically, the Ner application induces jasmonate metabolism in an AtEH7-dependent manner as an early response. In addition, it modulates PATHOGENESIS RELATED 1 (PR1) expression as a hallmark of SA signaling activation as a later effect. AtEH7, however, is not the exclusive target for this physiological readout induced by Ner. Although the underlying molecular mechanisms of AtEH7-dependent modulation of jasmonate signaling and Ner-induced PR1-dependent activation of SA signaling and thus defense response regulation remain unknown, our present work illustrates the powerful combination of forward chemical genetics and chemical proteomics for identifying novel phytohormone signaling modulatory factors. It also suggests that marginally explored metabolic enzymes such as epoxide hydrolases may have further physiological roles in modulating signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Epóxido Hidrolases/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Plant Biotechnol J ; 21(6): 1103-1105, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917445

RESUMO

Nicotiana benthamiana is increasingly used for transient gene expression to produce antibodies, vaccines, and other pharmaceutical proteins but transient gene expression is low in fully developed, 6-8-week old plants. This low gene expression is thought to be caused by the perception of the cold shock protein (CSP) of Agrobacterium tumefaciens. The CSP receptor is contested because both NbCSPR and NbCORE have been claimed to perceive CSP. Here, we demonstrate that CSP perception is abolished in 6-week-old plants silenced for NbCORE but not NbCSPR. Importantly, older NbCORE-silenced plants support a highly increased level of GFP fluorescence and protein upon agroinfiltration. The drastic increase in transient protein production in NbCORE-depleted plants offers new opportunities for molecular farming, where older plants with larger biomass can now be used for efficient protein expression.


Assuntos
Agrobacterium tumefaciens , Nicotiana , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/genética , Agrobacterium tumefaciens/genética , Anticorpos/metabolismo
8.
iScience ; 25(11): 105247, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36339259

RESUMO

Metacaspases are essential cysteine proteases present in plants, fungi, and protists that are regulated by calcium binding and proteolytic maturation through mechanisms not yet understood. Here, we developed and validated activity-based probes for the three main metacaspase types, and used them to study calcium-mediated activation of metacaspases from their precursors in vitro. By combining substrate-inspired tetrapeptide probes containing an acyloxymethylketone (AOMK) reactive group, with purified representatives of type-I, type-II, and type-III metacaspases, we were able to demonstrate that labeling of mature metacaspases is strictly dependent on calcium. The probe with the highest affinity for all metacaspases also labels higher molecular weight proteoforms of all three metacaspases only in the presence of calcium, displaying the active, unprocessed metacaspase intermediates. Our data suggest that metacaspase activation proceeds through previously unknown active intermediates that are formed upon calcium binding, before precursor processing.

9.
Methods Mol Biol ; 2480: 285-293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35616868

RESUMO

Bioluminescence enables the monitoring of spatiotemporal dynamics and activity of bacterial populations in planta. We here describe a procedure to use AgroLux, a bioluminescent Agrobacterium tumefaciens, as a tool to study bacterial responses upon agroinfiltration. The first method details how to transform bioluminescent AgroLux to carry binary plasmids of interests. Then, a simple agroinfiltration assay for in planta imaging of bioluminescence signals is presented. AgroLux assays will increase our understanding of plant-Agrobacterium interactions and plant immunity and improve molecular farming.


Assuntos
Agrobacterium tumefaciens , Imunidade Vegetal , Agrobacterium tumefaciens/metabolismo , Plasmídeos/genética , Nicotiana/genética
10.
New Phytol ; 235(3): 1287-1301, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35510806

RESUMO

Plants encode > 100 metalloproteases representing > 19 different protein families. Tools to study this large and diverse class of proteases have not yet been introduced into plant research. We describe the use of hydroxamate-based photoaffinity probes to explore plant proteomes for metalloproteases. We detected labelling of 23 metalloproteases in leaf extracts of the model plant Arabidopsis thaliana that belong to nine different metalloprotease families and localize to different subcellular compartments. The probes identified several chloroplastic FtsH proteases, vacuolar aspartyl aminopeptidase DAP1, peroxisomal metalloprotease PMX16, extracellular matrix metalloproteases and many cytosolic metalloproteases. We also identified nonproteolytic metallohydrolases involved in the release of auxin and in the urea cycle. Studies on tobacco plants (Nicotiana benthamiana) infected with the bacterial plant pathogen Pseudomonas syringae uncovered the induced labelling of PRp27, a secreted protein with implicated metalloprotease activity. PRp27 overexpression increases resistance, and PRp27 mutants lacking metal binding site are no longer labelled, but still show increased immunity. Collectively, these studies reveal the power of broad-range metalloprotease profiling in plants using hydroxamate-based probes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metaloproteases/metabolismo , Metaloproteínas/metabolismo , Doenças das Plantas , Pseudomonas syringae/metabolismo , Nicotiana/metabolismo
11.
Methods Mol Biol ; 2447: 53-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583772

RESUMO

Protein expression in plants by agroinfiltration and subsequent purification is increasingly used for the biochemical characterization of plant proteins. In this chapter we describe the purification of secreted, His-tagged proteases from the apoplast of agroinfiltrated Nicotiana benthamiana using immobilized metal affinity chromatography (IMAC). We show quality checks for the purified protease and discuss potential problems and ways to circumvent them. As a proof of concept, we produce and purify tomato immune protease Pip1 and demonstrate that the protein is active after purification.


Assuntos
Nicotiana , Peptídeo Hidrolases , Cromatografia de Afinidade/métodos , Endopeptidases , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Nicotiana/genética , Nicotiana/metabolismo
12.
Methods Mol Biol ; 2447: 105-117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583776

RESUMO

Reactivity-based chemical proteomics is a powerful technology based on the use of tagged chemicals that covalently react with surface-exposed residues on proteins in native proteomes. Reactivity profiling involves the purification, identification, and quantification of labeled peptides by LC-MS/MS. Here, we have detailed a protocol for reactivity profiling of Cys residues using iodoacetamide probes, displaying >1000 reactive Cys residues in the proteome of phytopathogen Pseudomonas syringae pv. tomato DC3000 (PtoDC3000). Comparative reactivity profiling of PtoDC3000 treated with or without hydrogen peroxide (H2O2) identified ~200 H2O2-sensitive Cys residues in antioxidant enzymes, metabolic enzymes, and transcription regulators. Interestingly, half of these H2O2-sensitive Cys residues are more reactive in response to H2O2 and several proteins have multiple Cys residues with opposite reactivities in response to H2O2 exposure.


Assuntos
Cisteína , Solanum lycopersicum , Cromatografia Líquida , Cisteína/química , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Oxirredução , Proteoma/metabolismo , Pseudomonas syringae/metabolismo , Espectrometria de Massas em Tandem/métodos
13.
Plant J ; 108(2): 600-612, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34369027

RESUMO

Agroinfiltration in Nicotiana benthamiana is widely used to transiently express heterologous proteins in plants. However, the state of Agrobacterium itself is not well studied in agroinfiltrated tissues, despite frequent studies of immunity genes conducted through agroinfiltration. Here, we generated a bioluminescent strain of Agrobacterium tumefaciens GV3101 to monitor the luminescence of Agrobacterium during agroinfiltration. By integrating a single copy of the lux operon into the genome, we generated a stable 'AgroLux' strain, which is bioluminescent without affecting Agrobacterium growth in vitro and in planta. To illustrate its versatility, we used AgroLux to demonstrate that high light intensity post infiltration suppresses both Agrobacterium luminescence and protein expression. We also discovered that AgroLux can detect Avr/Cf-induced immune responses before tissue collapse, establishing a robust and rapid quantitative assay for the hypersensitive response (HR). Thus, AgroLux provides a non-destructive, versatile and easy-to-use imaging tool to monitor both Agrobacterium and plant responses.


Assuntos
Agrobacterium tumefaciens/genética , Agricultura Molecular/métodos , Nicotiana/microbiologia , Imunidade Vegetal , Proteínas Recombinantes/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luz , Medições Luminescentes , Microrganismos Geneticamente Modificados , Óperon , Folhas de Planta/microbiologia , Proteínas Recombinantes/metabolismo , Nicotiana/imunologia
14.
J Exp Bot ; 72(9): 3381-3394, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33462613

RESUMO

Secreted proteases act at the front line of defence and play pivotal roles in disease resistance. However, the criteria for apoplastic immune proteases are not always defined and followed. Here, we critically reviewed 46 apoplastic proteases that function in plant defence. We found that most apoplastic immune proteases are induced upon infection, and 17 proteases are genetically required for the immune response. Proteolytic activity has been confirmed for most of the proteases but is rarely shown to be required for biological function, and the apoplastic location of proteases can be subjective and dynamic. Pathogen-derived inhibitors have only been described for cysteine and serine proteases, and the selection pressure acting on immune proteases is rarely investigated. We discuss six different mechanisms by which these proteases mediate plant immunity and summarize the challenges for future research.


Assuntos
Peptídeo Hidrolases , Imunidade Vegetal , Resistência à Doença , Peptídeo Hidrolases/metabolismo , Doenças das Plantas , Plantas/metabolismo , Proteólise
15.
Plant J ; 105(3): 831-840, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33124734

RESUMO

The lengthy process to generate transformed plants is a limitation in current research on the interactions of the model plant pathogen Pseudomonas syringae with plant hosts. Here we present an easy method called agromonas, where we quantify P. syringae growth in agroinfiltrated leaves of Nicotiana benthamiana using a cocktail of antibiotics to select P. syringae on plates. As a proof of concept, we demonstrate that transient expression of PAMP receptors reduces bacterial growth, and that transient depletion of a host immune gene and transient expression of a type-III effector increase P. syringae growth in agromonas assays. We show that we can rapidly achieve structure-function analysis of immune components and test the function of immune hydrolases. The agromonas method is easy, fast and robust for routine disease assays with various Pseudomonas strains without transforming plants or bacteria. The agromonas assay offers a reliable approach for further comprehensive analysis of plant immunity.


Assuntos
Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/microbiologia , Pseudomonas syringae/patogenicidade , Antibacterianos/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/crescimento & desenvolvimento , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia
16.
New Phytol ; 229(6): 3424-3439, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33251609

RESUMO

The plant apoplast is a harsh environment in which hydrolytic enzymes, especially proteases, accumulate during pathogen infection. However, the defense functions of most apoplastic proteases remain largely elusive. We show here that a newly identified small cysteine-rich secreted protein PC2 from the potato late blight pathogen Phytophthora infestans induces immunity in Solanum plants only after cleavage by plant apoplastic subtilisin-like proteases, such as tomato P69B. A minimal 61 amino acid core peptide carrying two key cysteines, conserved widely in most oomycete species, is sufficient for PC2-induced cell death. Furthermore, we showed that Kazal-like protease inhibitors, such as EPI1, produced by P. infestans prevent PC2 cleavage and dampen PC2 elicited host immunity. This study reveals that cleavage of pathogen proteins to release immunogenic peptides is an important function of plant apoplastic proteases.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Subtilisinas
17.
Nat Commun ; 11(1): 4393, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879321

RESUMO

Rcr3 is a secreted protease of tomato that is targeted by fungal effector Avr2, a secreted protease inhibitor of the fungal pathogen Cladosporium fulvum. The Avr2-Rcr3 complex is recognized by receptor-like protein Cf-2, triggering hypersensitive cell death (HR) and disease resistance. Avr2 also targets Rcr3 paralog Pip1, which is not required for Avr2 recognition but contributes to basal resistance. Thus, Rcr3 acts as a guarded decoy in this interaction, trapping the fungus into a recognition event. Here we show that Rcr3 evolved > 50 million years ago (Mya), whereas Cf-2 evolved <6Mya by co-opting the pre-existing Rcr3 in the Solanum genus. Ancient Rcr3 homologs present in tomato, potato, eggplants, pepper, petunia and tobacco can be inhibited by Avr2 with the exception of tobacco Rcr3. Four variant residues in Rcr3 promote Avr2 inhibition, but the Rcr3 that co-evolved with Cf-2 lacks three of these residues, indicating that the Rcr3 co-receptor is suboptimal for Avr2 binding. Pepper Rcr3 triggers HR with Cf-2 and Avr2 when engineered for enhanced inhibition by Avr2. Nicotiana benthamiana (Nb) is a natural null mutant carrying Rcr3 and Pip1 alleles with deleterious frame-shift mutations. Resurrected NbRcr3 and NbPip1 alleles were active proteases and further NbRcr3 engineering facilitated Avr2 inhibition, uncoupled from HR signalling. The evolution of a receptor co-opting a conserved pathogen target contrasts with other indirect pathogen recognition mechanisms.


Assuntos
Cladosporium , Resistência à Doença/genética , Nicotiana , Peptídeo Hidrolases/genética , Imunidade Vegetal/genética , Solanum , Cladosporium/genética , Cladosporium/metabolismo , Cladosporium/patogenicidade , Evolução Molecular , Proteínas Fúngicas/metabolismo , Genes de Plantas , Interações Hospedeiro-Parasita , Peptídeo Hidrolases/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inibidores de Proteases/metabolismo , Solanum/genética , Solanum/metabolismo , Solanum/microbiologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
18.
Proc Natl Acad Sci U S A ; 117(29): 17409-17417, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32616567

RESUMO

Proteolytic cascades regulate immunity and development in animals, but these cascades in plants have not yet been reported. Here we report that the extracellular immune protease Rcr3 of tomato is activated by P69B and other subtilases (SBTs), revealing a proteolytic cascade regulating extracellular immunity in solanaceous plants. Rcr3 is a secreted papain-like Cys protease (PLCP) of tomato that acts both in basal resistance against late blight disease (Phytophthora infestans) and in gene-for-gene resistance against the fungal pathogen Cladosporium fulvum (syn. Passalora fulva) Despite the prevalent model that Rcr3-like proteases can activate themselves at low pH, we found that catalytically inactive proRcr3 mutant precursors are still processed into mature mRcr3 isoforms. ProRcr3 is processed by secreted P69B and other Asp-selective SBTs in solanaceous plants, providing robust immunity through SBT redundancy. The apoplastic effector EPI1 of P. infestans can block Rcr3 activation by inhibiting SBTs, suggesting that this effector promotes virulence indirectly by preventing the activation of Rcr3(-like) immune proteases. Rcr3 activation in Nicotiana benthamiana requires a SBT from a different subfamily, indicating that extracellular proteolytic cascades have evolved convergently in solanaceous plants or are very ancient in the plant kingdom. The frequent incidence of Asp residues in the cleavage region of Rcr3-like proteases in solanaceous plants indicates that activation of immune proteases by SBTs is a general mechanism, illuminating a proteolytic cascade that provides robust apoplastic immunity.


Assuntos
Peptídeo Hidrolases/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteólise , Solanum lycopersicum/metabolismo , Cladosporium , Solanum lycopersicum/genética , Peptídeo Hidrolases/genética , Phytophthora infestans , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Virulência
19.
Curr Biol ; 30(12): R715-R717, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32574636

RESUMO

Flower organ abscission in Arabidopsis is regulated by a peptide hormone that is released from its precursor by a network of redundant subtilases. An exciting new study describes how drought-induced flower abscission in tomato is regulated similarly, but distinctly via a single, different subtilase that releases a very different peptide hormone.


Assuntos
Hormônios Peptídicos , Solanum lycopersicum , Biologia , Secas , Flores , Regulação da Expressão Gênica de Plantas
20.
Mol Cell ; 77(5): 927-929, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142688
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA