Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2917, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575562

RESUMO

VISTA, an inhibitory myeloid-T-cell checkpoint, holds promise as a target for cancer immunotherapy. However, its effective targeting has been impeded by issues such as rapid clearance and cytokine release syndrome observed with previous VISTA antibodies. Here we demonstrate that SNS-101, a newly developed pH-selective VISTA antibody, addresses these challenges. Structural and biochemical analyses confirmed the pH-selectivity and unique epitope targeted by SNS-101. These properties confer favorable pharmacokinetic and safety profiles on SNS-101. In syngeneic tumor models utilizing human VISTA knock-in mice, SNS-101 shows in vivo efficacy when combined with a PD-1 inhibitor, modulates cytokine and chemokine signaling, and alters the tumor microenvironment. In summary, SNS-101, currently in Phase I clinical trials, emerges as a promising therapeutic biologic for a wide range of patients whose cancer is refractory to current immunotherapy regimens.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Camundongos , Animais , Antígenos B7 , Anticorpos , Neoplasias/tratamento farmacológico , Imunoterapia , Concentração de Íons de Hidrogênio , Microambiente Tumoral
2.
Antibodies (Basel) ; 12(3)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37753969

RESUMO

Immune checkpoints and other immunoregulatory targets can be difficult to precisely target due to expression on non-tumor immune cells critical to maintaining immune homeostasis in healthy tissues. On-target/off-tumor binding of therapeutics results in significant pharmacokinetic and pharmacodynamic problems. Target-mediated drug disposition (TMDD) significantly limits effective intratumoral drug levels and adversely affects anti-tumor efficacy. Target engagement outside the tumor environment may lead to severe immune-related adverse events (irAEs), resulting in a narrowing of the therapeutic window, sub-optimal dosing, or cessation of drug development altogether. Overcoming these challenges has become tractable through recent advances in antibody engineering and screening approaches. Here, we review the discovery and development of conditionally active antibodies with minimal binding to target at physiologic pH but high-affinity target binding at the low pH of the tumor microenvironment by focusing on the discovery and improved properties of pH-dependent mAbs targeting two T cell checkpoints, VISTA and CTLA-4.

3.
Cancer Gene Ther ; 29(6): 859-869, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34385584

RESUMO

CDK4/6 inhibitors significantly prolong progression-free survival in patients with advanced hormone receptor-positive (HR+) HER2-negative breast cancer. Despite recent successes, patients acquire resistance, necessitating the development of additional novel therapeutic strategies. Bromodomain and extra-terminal domain (BET) proteins are key epigenetic regulators that interact with acetylated lysine (AcLys) residues of histones or transcription factors. BET proteins are directly involved in modulating estrogen receptor (ER) signaling and the cell cycle. Therefore, BET inhibitors can potentially offer new strategies in the treatment of advanced ER+ breast cancer. ZEN-3694 is an orally bioavailable small molecule BET inhibitor currently being evaluated in Phase 1/2 clinical trials (NCT03901469). To assess a potential combination strategy in a CDK4/6i resistant breast cancer population, we investigated the mechanism of action of ZEN-3694 combined with CDK4/6 inhibitors in the ER+ cell lines resistant to palbociclib or abemaciclib. Here, we describe that the combination of ZEN-3694 with CDK4/6i potently inhibits proliferation and induces apoptosis in CDK4/6i resistant cell lines. The resistance to both palbociclib and abemaciclib was associated with the strong upregulation of CDK6 and CCND1 protein levels, which was reversed by the ZEN-3694 treatment. Furthermore, RNAseq data and pathway analysis elucidated the combinatorial effects of ZEN-3694 with CDK4/6 inhibitors through significant downregulation of multiple pathways involved in cell cycle regulation, cellular growth, proliferation, apoptosis, inflammation, and cellular immune response. Our data indicate that ZEN-3694 has therapeutic potential in combination with CDK4/6 inhibitors in patients with advanced ER+ breast resistant to CDK4/6 inhibitors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/uso terapêutico , Feminino , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
J Med Chem ; 61(18): 8202-8211, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30165024

RESUMO

BET proteins are key epigenetic regulators that regulate transcription through binding to acetylated lysine (AcLys) residues of histones and transcription factors through bromodomains (BDs). The disruption of this interaction with small molecule bromodomain inhibitors is a promising approach to treat various diseases including cancer, autoimmune and cardiovascular diseases. Covalent inhibitors can potentially offer a more durable target inhibition leading to improved in vivo pharmacology. Here we describe the design of covalent inhibitors of BRD4(BD1) that target a methionine in the binding pocket by attaching an epoxide warhead to a suitably oriented noncovalent inhibitor. Using thermal denaturation, MALDI-TOF mass spectrometry, and an X-ray crystal structure, we demonstrate that these inhibitors selectively form a covalent bond with Met149 in BRD4(BD1) but not other bromodomains and provide durable transcriptional and antiproliferative activity in cell based assays. Covalent targeting of methionine offers a novel approach to drug discovery for BET proteins and other targets.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Descoberta de Drogas , Neoplasias Hematológicas/tratamento farmacológico , Metionina/química , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Antineoplásicos/química , Proteínas de Ciclo Celular , Cristalografia por Raios X , Neoplasias Hematológicas/patologia , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Cancer Cell ; 30(5): 792-805, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27908736

RESUMO

Acute myelogenous leukemia (AML) is an aggressive disease associated with drug resistance and relapse. To improve therapeutic strategies, it is critical to better understand the mechanisms that underlie AML progression. Here we show that the integrin binding glycoprotein CD98 plays a central role in AML. CD98 promotes AML propagation and lethality by driving engagement of leukemia cells with their microenvironment and maintaining leukemic stem cells. Further, delivery of a humanized anti-CD98 antibody blocks growth of patient-derived AML, highlighting the importance of this pathway in human disease. These findings indicate that microenvironmental interactions are key regulators of AML and that disrupting these signals with targeted inhibitors such as CD98 antibodies may be a valuable therapeutic approach for adults and children with this disease.


Assuntos
Anticorpos/administração & dosagem , Proteína-1 Reguladora de Fusão/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Animais , Anticorpos/farmacologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína-1 Reguladora de Fusão/antagonistas & inibidores , Técnicas de Inativação de Genes , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Transplante de Neoplasias
6.
Mol Pharm ; 12(11): 3986-98, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26393951

RESUMO

Conventional antibody-drug conjugates (ADCs) are heterogeneous mixtures of chemically distinct molecules that vary in both drugs/antibody (DAR) and conjugation sites. Suboptimal properties of heterogeneous ADCs have led to new site-specific conjugation methods for improving ADC homogeneity. Most site-specific methods require extensive antibody engineering to identify optimal conjugation sites and introduce unique functional groups for conjugation with appropriately modified linkers. Alternative nonrecombinant methods have emerged in which bifunctional linkers are utilized to cross-link antibody interchain cysteines and afford ADCs containing four drugs/antibody. Although these methods have been shown to improve ADC homogeneity and stability in vitro, their effect on the pharmacological properties of ADCs in vivo is unknown. In order to determine the relative impact of interchain cysteine cross-linking on the therapeutic window and other properties of ADCs in vivo, we synthesized a derivative of the known ADC payload, MC-MMAF, that contains a bifunctional dibromomaleimide (DBM) linker instead of a conventional maleimide (MC) linker. The DBM-MMAF derivative was conjugated to trastuzumab and a novel anti-CD98 antibody to afford ADCs containing predominantly four drugs/antibody. The pharmacological properties of the resulting cross-linked ADCs were compared with analogous heterogeneous ADCs derived from conventional linkers. The results demonstrate that DBM linkers can be applied directly to native antibodies, without antibody engineering, to yield highly homogeneous ADCs via cysteine cross-linking. The resulting ADCs demonstrate improved pharmacokinetics, superior efficacy, and reduced toxicity in vivo compared to analogous conventional heterogeneous ADCs.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Cisteína/química , Imunoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Trastuzumab/farmacologia , Animais , Anticorpos Monoclonais/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas , Feminino , Citometria de Fluxo , Imunofluorescência , Proteína-1 Reguladora de Fusão/imunologia , Humanos , Imunoconjugados/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA