Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 3(7)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32467316

RESUMO

The cohesin subunit STAG2 has emerged as a recurrently inactivated tumor suppressor in human cancers. Using candidate approaches, recent studies have revealed a synthetic lethal interaction between STAG2 and its paralog STAG1 To systematically probe genetic vulnerabilities in the absence of STAG2, we have performed genome-wide CRISPR screens in isogenic cell lines and identified STAG1 as the most prominent and selective dependency of STAG2-deficient cells. Using an inducible degron system, we show that chemical genetic degradation of STAG1 protein results in the loss of sister chromatid cohesion and rapid cell death in STAG2-deficient cells, while sparing STAG2-wild-type cells. Biochemical assays and X-ray crystallography identify STAG1 regions that interact with the RAD21 subunit of the cohesin complex. STAG1 mutations that abrogate this interaction selectively compromise the viability of STAG2-deficient cells. Our work highlights the degradation of STAG1 and inhibition of its interaction with RAD21 as promising therapeutic strategies. These findings lay the groundwork for the development of STAG1-directed small molecules to exploit synthetic lethality in STAG2-mutated tumors.


Assuntos
Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Neoplasias/genética , Proteínas Nucleares/genética , Mutações Sintéticas Letais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Inativação Gênica , Marcação de Genes , Estudo de Associação Genômica Ampla , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteólise , Relação Estrutura-Atividade , Coesinas
2.
Elife ; 92020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32065581

RESUMO

Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin's chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesinSTAG1 which binds chromatin for hours, whereas cohesinSTAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesinSTAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesinSTAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesinSTAG2 extrusion activity.


Assuntos
Acetiltransferases/fisiologia , Fator de Ligação a CCCTC/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetilação , Proteínas de Transporte/genética , Simulação por Computador , Fase G1 , Genoma Humano , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Coesinas
3.
Elife ; 82019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30910006

RESUMO

Targeted cancer therapy is based on exploiting selective dependencies of tumor cells. By leveraging recent functional screening data of cancer cell lines we identify Werner syndrome helicase (WRN) as a novel specific vulnerability of microsatellite instability-high (MSI-H) cancer cells. MSI, caused by defective mismatch repair (MMR), occurs frequently in colorectal, endometrial and gastric cancers. We demonstrate that WRN inactivation selectively impairs the viability of MSI-H but not microsatellite stable (MSS) colorectal and endometrial cancer cell lines. In MSI-H cells, WRN loss results in severe genome integrity defects. ATP-binding deficient variants of WRN fail to rescue the viability phenotype of WRN-depleted MSI-H cancer cells. Reconstitution and depletion studies indicate that WRN dependence is not attributable to acute loss of MMR gene function but might arise during sustained MMR-deficiency. Our study suggests that pharmacological inhibition of WRN helicase function represents an opportunity to develop a novel targeted therapy for MSI-H cancers.


Assuntos
Instabilidade de Microssatélites , Neoplasias/terapia , Helicase da Síndrome de Werner/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular , Reparo de Erro de Pareamento de DNA , Humanos , Modelos Teóricos , Helicase da Síndrome de Werner/genética
4.
Elife ; 62017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28691904

RESUMO

Recent genome analyses have identified recurrent mutations in the cohesin complex in a wide range of human cancers. Here we demonstrate that the most frequently mutated subunit of the cohesin complex, STAG2, displays a strong synthetic lethal interaction with its paralog STAG1. Mechanistically, STAG1 loss abrogates sister chromatid cohesion in STAG2 mutated but not in wild-type cells leading to mitotic catastrophe, defective cell division and apoptosis. STAG1 inactivation inhibits the proliferation of STAG2 mutated but not wild-type bladder cancer and Ewing sarcoma cell lines. Restoration of STAG2 expression in a mutated bladder cancer model alleviates the dependency on STAG1. Thus, STAG1 and STAG2 support sister chromatid cohesion to redundantly ensure cell survival. STAG1 represents a vulnerability of cancer cells carrying mutations in the major emerging tumor suppressor STAG2 across different cancer contexts. Exploiting synthetic lethal interactions to target recurrent cohesin mutations in cancer, e.g. by inhibiting STAG1, holds the promise for the development of selective therapeutics.


Assuntos
Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutações Sintéticas Letais , Proteínas de Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos
5.
Cancer Res ; 75(17): 3543-53, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26122845

RESUMO

Failure to repair DNA damage or defective sister chromatid cohesion, a process essential for correct chromosome segregation, can be causative of chromosomal instability (CIN), which is a hallmark of many types of cancers. We investigated how frequent this occurs in head and neck squamous cell carcinoma (HNSCC) and whether specific mechanisms or genes could be linked to these phenotypes. The genomic instability syndrome Fanconi anemia is caused by mutations in any of at least 16 genes regulating DNA interstrand crosslink (ICL) repair. Since patients with Fanconi anemia have a high risk to develop HNSCC, we investigated whether and to which extent Fanconi anemia pathway inactivation underlies CIN in HNSCC of non-Fanconi anemia individuals. We observed ICL-induced chromosomal breakage in 9 of 17 (53%) HNSCC cell lines derived from patients without Fanconi anemia. In addition, defective sister chromatid cohesion was observed in five HNSCC cell lines. Inactivation of FANCM was responsible for chromosomal breakage in one cell line, whereas in two other cell lines, somatic mutations in PDS5A or STAG2 resulted in inadequate sister chromatid cohesion. In addition, FANCF methylation was found in one cell line by screening an additional panel of 39 HNSCC cell lines. Our data demonstrate that CIN in terms of ICL-induced chromosomal breakage and defective chromatid cohesion is frequently observed in HNSCC. Inactivation of known Fanconi anemia and chromatid cohesion genes does explain CIN in the minority of cases. These findings point to phenotypes that may be highly relevant in treatment response of HNSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Instabilidade Cromossômica/genética , Anemia de Fanconi/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cromátides/genética , Dano ao DNA/genética , Reparo do DNA/genética , Anemia de Fanconi/patologia , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Mutação , Estadiamento de Neoplasias , Troca de Cromátide Irmã , Carcinoma de Células Escamosas de Cabeça e Pescoço
6.
EMBO J ; 33(22): 2643-58, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25257309

RESUMO

Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here, we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells. A transcriptome-wide analysis revealed that SNW1 or PRPF8 depletion affects the splicing of specific introns in a subset of pre-mRNAs, including pre-mRNAs encoding the cohesion protein sororin and the APC/C subunit APC2. SNW1 depletion causes cohesion defects predominantly by reducing sororin levels, which causes destabilisation of cohesin on DNA. SNW1 depletion also reduces APC/C activity and contributes to cohesion defects indirectly by delaying mitosis and causing "cohesion fatigue". Simultaneous expression of sororin and APC2 from intron-less cDNAs restores cohesion in SNW1-depleted cells. These results indicate that the spliceosome is required for mitosis because it enables expression of genes essential for cohesion. Our transcriptome-wide identification of retained introns in SNW1- and PRPF8-depleted cells may help to understand the aetiology of diseases associated with splicing defects, such as retinosa pigmentosum and cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas do Citoesqueleto/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas do Citoesqueleto/genética , Deleção de Genes , Células HeLa , Humanos , Coativadores de Receptor Nuclear/genética , Precursores de RNA/genética , Transcriptoma/fisiologia
7.
Am J Hum Genet ; 86(2): 262-6, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137776

RESUMO

The iron-sulfur-containing DNA helicases XPD, FANCJ, DDX11, and RTEL represent a small subclass of superfamily 2 helicases. XPD and FANCJ have been connected to the genetic instability syndromes xeroderma pigmentosum and Fanconi anemia. Here, we report a human individual with biallelic mutations in DDX11. Defective DDX11 is associated with a unique cellular phenotype in which features of Fanconi anemia (drug-induced chromosomal breakage) and Roberts syndrome (sister chromatid cohesion defects) coexist. The DDX11-deficient patient represents another cohesinopathy, besides Cornelia de Lange syndrome and Roberts syndrome, and shows that DDX11 functions at the interface between DNA repair and sister chromatid cohesion.


Assuntos
Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/genética , Quebra Cromossômica , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Mutação/genética , Troca de Cromátide Irmã/genética , Xeroderma Pigmentoso/genética , Adolescente , Sequência de Bases , Pré-Escolar , RNA Helicases DEAD-box/deficiência , DNA Helicases/deficiência , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Neoplasias/genética , Linhagem , Fenótipo , Polônia , Gravidez , Síndrome
8.
Anemia ; 2010: 565268, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21490908

RESUMO

Fanconi anemia (FA) is a recessively inherited disease characterized by multiple symptoms including growth retardation, skeletal abnormalities, and bone marrow failure. The FA diagnosis is complicated due to the fact that the clinical manifestations are both diverse and variable. A chromosomal breakage test using a DNA cross-linking agent, in which cells from an FA patient typically exhibit an extraordinarily sensitive response, has been considered the gold standard for the ultimate diagnosis of FA. In the majority of FA patients the test results are unambiguous, although in some cases the presence of hematopoietic mosaicism may complicate interpretation of the data. However, some diagnostic overlap with other syndromes has previously been noted in cases with Nijmegen breakage syndrome. Here we present results showing that misdiagnosis may also occur with patients suffering from two of the three currently known cohesinopathies, that is, Roberts syndrome (RBS) and Warsaw breakage syndrome (WABS). This complication may be avoided by scoring metaphase chromosomes-in addition to chromosomal breakage-for spontaneously occurring premature centromere division, which is characteristic for RBS and WABS, but not for FA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA