Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 40(8): 914-925, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36169099

RESUMO

ATP8B1 is a phospholipid flippase and member of the type 4 subfamily of P-type ATPases (P4-ATPase) subfamily. P4-ATPases catalyze the translocation of phospholipids across biological membranes, ensuring proper membrane asymmetry, which is crucial for membrane protein targeting and activity, vesicle biogenesis, and barrier function. Here we have investigated the role of ATP8B1 in the endolysosomal pathway in macrophages. Depletion of ATP8B1 led to delayed degradation of content in the phagocytic pathway and in overacidification of the endolysosomal system. Furthermore, ATP8B1 knockdown cells exhibited large multivesicular bodies filled with intraluminal vesicles. Similar phenotypes were observed in CRISPR-generated ATP8B1 knockout cells. Importantly, induction of autophagy led to accumulation of autophagosomes in ATP8B1 knockdown cells. Collectively, our results support a novel role for ATP8B1 in lysosomal fusion in macrophages, a process crucial in the terminal phase of endolysosomal degradation.


Assuntos
Adenosina Trifosfatases , Fosfolipídeos , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , Lisossomos
2.
Cell Physiol Biochem ; 48(5): 2189-2204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110678

RESUMO

BACKGROUND/AIMS: For applicability of cell-based therapies aimed at the treatment of liver failure, such as bioartificial livers (BALs) and hepatocyte transplantation, it is essential that the applied hepatocytes tolerate exposure to the patient plasma. However, plasma from both healthy donors and acute liver failure (ALF) patients is detrimental to hepatocytes and hepatic cell lines, such as HepaRG. We aimed to elucidate the underlying mechanisms of plasma-induced toxicity against HepaRG cells in order to ultimately develop methods to reduce this toxicity and render HepaRG-BAL treatment more effective. METHODS: Differentiated HepaRG cells cultured in monolayers and laboratory-scale BALs were exposed to culture medium, healthy human plasma, healthy porcine plasma and ALF porcine plasma. Healthy human plasma was fractionated based on size- and polarity, albumin depleted and heat treated to characterize the toxic fraction. The cells were assessed for viability by total protein content and trypan blue staining. Their hepatic differentiation was assessed on transcript level through qRT-PCR and microarray analysis, and on functional level for Cytochrome P450 3A4 activity and ammonia elimination. Mitochondrial damage was assessed by JC-1 staining and mitochondrial gene transcription. RESULTS: Sixteen hours of healthy human plasma exposure did not affect viability, however, hepatic gene-transcript levels decreased dramatically and dose-dependently within four hours of exposure. These changes were associated with early NF-kB signaling and a shift from mitochondrial energy metabolism towards glycolysis. Healthy human plasma-toxicity was associated with the dose-dependent presence of heat-resistant, albumin-bound and (partly) hydrophobic toxic compound(s). HepaRG cells cultured in BALs were partially protected from plasma-toxicity, which was mainly attributable to medium perfusion and/or 3D configuration applied during BAL culturing. The detrimental human plasma effects were reversible in BAL-cultured cells. Porcine ALF-plasma elicited mitotoxicity additional to the basal detrimental effect of porcine healthy plasma, which were only partially reversible. CONCLUSION: A specific fraction of human plasma reduces hepatic differentiation of HepaRG cultures, in association with early NF-κB activation. In addition, ALF-plasma elicits mitotoxic effects. These findings allow for a targeted approach in preventing plasma-induced cell damage.


Assuntos
Técnicas de Cultura de Células/métodos , Falência Hepática Aguda/patologia , Fígado Artificial , Plasma/química , Animais , Arginase/genética , Arginase/metabolismo , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Falência Hepática Aguda/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Plasma/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Suínos , Regulação para Cima/efeitos dos fármacos
3.
Cell Mol Life Sci ; 74(4): 715-730, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27628304

RESUMO

P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the ß-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Adenosina Trifosfatases/imunologia , Endocitose , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Receptor 4 Toll-Like/imunologia , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/imunologia , Transdução de Sinais
4.
Drug Metab Dispos ; 45(1): 56-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27780834

RESUMO

Dimethylsulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG; however, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine whether overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen- and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (P450) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target P450s, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, whereas CYP3A4 was reduced. Moreover, the metabolism of low-clearance compounds warfarin and prednisolone was increased. In conclusion, CAR overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO still may be applied to accomplish higher drug metabolism, required for sensitive assays, such as low-clearance studies and identification of (rare) metabolites, whereas reduced total protein content after DMSO culture is diminished by CAR overexpression.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/química , Dimetil Sulfóxido/farmacologia , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Receptor Constitutivo de Androstano , Avaliação Pré-Clínica de Medicamentos , Vetores Genéticos , Humanos , Lentivirus/genética , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Modelos Biológicos
5.
Sci Rep ; 6: 31829, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535001

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. It is uncertain if simple steatosis, the initial and prevailing form of NAFLD, sensitizes the liver to cholestasis. Here, we compared the effects of obstructive cholestasis in rats with a normal liver versus rats with simple steatosis induced by a methionine/choline-deficient diet. We found that plasma liver enzymes were higher and hepatic neutrophil influx, inflammation, and fibrosis were more pronounced in animals with combined steatosis and cholestasis compared to cholestasis alone. Circulating bile salt levels were markedly increased and hepatic bile salt composition shifted from hydrophilic tauro-ß-muricholate to hydrophobic taurocholate. This shift was cytotoxic for HepG2 hepatoma cells. Gene expression analysis revealed induction of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), and modulation of the hepatic bile salt transport system. In conclusion, simple steatosis sensitizes the liver to cholestatic injury, inflammation, and fibrosis in part due to a cytotoxic shift in bile salt composition. Plasma bile salt levels were elevated, linked to dysregulation of bile salt synthesis and enhanced trafficking of bile salts from the liver to the systemic circulation.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fígado , Hepatopatia Gordurosa não Alcoólica , Ácido Taurocólico/análogos & derivados , Animais , Transporte Biológico Ativo , Colestase/complicações , Colestase/metabolismo , Colestase/patologia , Colesterol 7-alfa-Hidroxilase/metabolismo , Células Hep G2 , Humanos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ácido Taurocólico/metabolismo
6.
Biochim Biophys Acta ; 1863(9): 2280-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27301931

RESUMO

Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport. Previously it was shown that CFTR transcript levels were strongly reduced in livers of PFIC1 patients. Here we have investigated the hypothesis that ATP8B1 is important for proper CFTR expression and function. We analyzed CFTR expression in ATP8B1-depleted intestinal and pulmonary epithelial cell lines and assessed CFTR function by measuring short-circuit currents across transwell-grown ATP8B1-depleted intestinal T84 cells and by a genetically-encoded fluorescent chloride sensor. In addition, we studied CFTR surface expression upon induction of CFTR transcription. We show that CFTR protein levels are strongly reduced in the apical membrane of human ATP8B1-depleted intestinal and pulmonary epithelial cell lines, a phenotype that coincided with reduced CFTR activity. Apical membrane insertion upon induction of ectopically-expressed CFTR was strongly impaired in ATP8B1-depleted cells. We conclude that ATP8B1 is essential for correct apical localization of CFTR in human intestinal and pulmonary epithelial cells, and that impaired CFTR localization underlies some of the extrahepatic phenotypes observed in ATP8B1 deficiency.


Assuntos
Adenosina Trifosfatases/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Ativação do Canal Iônico , Pulmão/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
J Hepatol ; 63(6): 1525-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26220753

RESUMO

Crigler-Najjar syndrome presents as severe unconjugated hyperbilirubinemia and is characteristically caused by a mutation in the UGT1A1 gene, encoding the enzyme responsible for bilirubin glucuronidation. Here we present a patient with Crigler-Najjar syndrome with a completely normal UGT1A1 coding region. Instead, a homozygous 3 nucleotide insertion in the UGT1A1 promoter was identified that interrupts the HNF1α binding site. This mutation results in almost complete abolishment of UGT1A1 promoter activity and prevents the induction of UGT1A1 expression by the liver nuclear receptors CAR and PXR, explaining the lack of a phenobarbital response in this patient. Although animal studies have revealed the importance of HNF1α for normal liver function, this case provides the first clinical proof that mutations in its binding site indeed result in severe liver pathology stressing the importance of promoter sequence analysis.


Assuntos
Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/metabolismo , Glucuronosiltransferase/deficiência , Glucuronosiltransferase/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Adulto , Sequência de Bases , Sítios de Ligação/genética , Receptor Constitutivo de Androstano , Síndrome de Crigler-Najjar/classificação , Feminino , Homozigoto , Humanos , Fígado/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/metabolismo , Análise de Sequência de DNA , Transcrição Gênica/efeitos dos fármacos
8.
Biochim Biophys Acta ; 1842(12 Pt A): 2378-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239307

RESUMO

Deficiency of the phospholipid flippase ATPase, aminophospholipid transporter, class I, type 8B, member 1 (ATP8B1) causes progressive familial intrahepatic cholestasis type 1 (PFIC1) and benign recurrent intrahepatic cholestasis type 1 (BRIC1). Apart from cholestasis, many patients also suffer from diarrhea of yet unknown etiology. Here we have studied the hypothesis that intestinal ATP8B1 deficiency results in bile salt malabsorption as a possible cause of PFIC1/BRIC1 diarrhea. Bile salt transport was studied in ATP8B1-depleted intestinal Caco-2 cells. Apical membrane localization was studied by a biotinylation approach. Fecal bile salt and electrolyte contents were analyzed in stool samples of PFIC1 patients, of whom some had undergone biliary diversion or liver transplantation. Bile salt uptake by the apical sodium-dependent bile salt transporter solute carrier family 10 (sodium/bile acid cotransporter), member 2 (SLC10A2) was strongly impaired in ATP8B1-depleted Caco-2 cells. The reduced SLC10A2 activity coincided with strongly reduced apical membrane localization, which was caused by impaired apical membrane insertion of SLC10A2. Moreover, we show that endogenous ATP8B1 exists in a functional heterodimer with transmembrane protein 30A (CDC50A) in Caco-2 cells. Analyses of stool samples of post-transplant PFIC1 patients demonstrated that bile salt content was not changed, whereas sodium and chloride concentrations were elevated and potassium levels were decreased. The ATP8B1-CDC50A heterodimer is essential for the apical localization of SLC10A2 in Caco-2 cells. Diarrhea in PFIC1/BRIC1 patients has a secretory origin to which SLC10A2 deficiency may contribute. This results in elevated luminal bile salt concentrations and consequent enhanced electrolyte secretion and/or reduced electrolyte resorption.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Ácidos e Sais Biliares/metabolismo , Transporte Biológico/genética , Western Blotting , Células CACO-2 , Membrana Celular/metabolismo , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Fezes/química , Humanos , Mucosa Intestinal/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Multimerização Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Taurocólico/metabolismo , Ácido Taurocólico/farmacocinética
9.
Int J Mol Sci ; 14(4): 7897-922, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23579954

RESUMO

P4 ATPases catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes, a process termed "lipid flipping". Accumulating evidence obtained in lower eukaryotes points to an important role for P4 ATPases in vesicular protein trafficking. The human genome encodes fourteen P4 ATPases (fifteen in mouse) of which the cellular and physiological functions are slowly emerging. Thus far, deficiencies of at least two P4 ATPases, ATP8B1 and ATP8A2, are the cause of severe human disease. However, various mouse models and in vitro studies are contributing to our understanding of the cellular and physiological functions of P4-ATPases. This review summarizes current knowledge on the basic function of these phospholipid translocating proteins, their proposed action in intracellular vesicle transport and their physiological role.


Assuntos
Adenosina Trifosfatases/metabolismo , Genoma Humano , Doenças Metabólicas/enzimologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Adenosina Trifosfatases/genética , Animais , Transporte Biológico Ativo/genética , Modelos Animais de Doenças , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Camundongos , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos/genética , Fosfolipídeos/metabolismo
10.
Hepatology ; 50(5): 1597-605, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19731236

RESUMO

UNLABELLED: Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type 1 (PFIC1) and benign recurrent intrahepatic cholestasis type 1 (BRIC1), forming a spectrum of cholestatic disease. Whereas PFIC1 is a progressive, endstage liver disease, BRIC1 patients suffer from episodic periods of cholestasis that resolve spontaneously. At present it is not clear how the type and location of the mutations relate to the clinical manifestations of PFIC1 and BRIC1. ATP8B1 localizes to the canalicular membrane of hepatocytes where it mediates the inward translocation of phosphatidylserine. ATP8B1 interacts with CDC50A, which is required for endoplasmic reticulum exit and plasma membrane localization. In this study we analyzed a panel of missense mutations causing PFIC1 (G308V, D554N, G1040R) or BRIC1 (D70N, I661T). In addition, we included two mutations that have been associated with intrahepatic cholestasis of pregnancy (ICP) (D70N, R867C). We examined the effect of these mutations on protein stability and interaction with CDC50A in Chinese hamster ovary cells, and studied the subcellular localization in WIF-B9 cells. Protein stability was reduced for three out of six mutations studied. Two out of three PFIC1 mutant proteins did not interact with CDC50A, whereas BRIC1/ICP mutants displayed reduced interaction. Importantly, none of the PFIC1 mutants were detectable in the canalicular membrane of WIF-B9 cells, whereas all BRIC1/ICP mutants displayed the same cellular staining pattern as wild-type ATP8B1. Our data indicate that PFIC1 mutations lead to the complete absence of canalicular expression, whereas in BRIC1/ICP residual protein is expressed in the canalicular membrane. CONCLUSION: These data provide an explanation for the difference in severity between the phenotypes of PFIC1 and BRIC1.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Hepatócitos/metabolismo , Mutação de Sentido Incorreto/genética , Animais , Linhagem Celular , Colestase Intra-Hepática/metabolismo , Colestase Intra-Hepática/patologia , Cricetinae , Cricetulus , Modelos Animais de Doenças , Feminino , Hepatócitos/patologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA