Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(1): 68-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536175

RESUMO

Growing microtubule ends organize end-tracking proteins into comets of mixed composition. Here using a reconstituted fission yeast system consisting of end-binding protein Mal3, kinesin Tea2 and cargo Tip1, we found that these proteins can be driven into liquid-phase droplets both in solution and at microtubule ends under crowding conditions. In the absence of crowding agents, cryo-electron tomography revealed that motor-dependent comets consist of disordered networks where multivalent interactions may facilitate non-stoichiometric accumulation of cargo Tip1. We found that two disordered protein regions in Mal3 are required for the formation of droplets and motor-dependent accumulation of Tip1, while autonomous Mal3 comet formation requires only one of them. Using theoretical modelling, we explore possible mechanisms by which motor activity and multivalent interactions may lead to the observed enrichment of Tip1 at microtubule ends. We conclude that microtubule ends may act as platforms where multivalent interactions condense microtubule-associated proteins into large multi-protein complexes.


Assuntos
Microtúbulos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
Nat Struct Mol Biol ; 27(12): 1134-1141, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989304

RESUMO

Structural maintenance of chromosome (SMC) protein complexes are the key organizers of the spatiotemporal structure of chromosomes. The condensin SMC complex has recently been shown to be a molecular motor that extrudes large loops of DNA, but the mechanism of this unique motor remains elusive. Using atomic force microscopy, we show that budding yeast condensin exhibits mainly open 'O' shapes and collapsed 'B' shapes, and it cycles dynamically between these two states over time, with ATP binding inducing the O to B transition. Condensin binds DNA via its globular domain and also via the hinge domain. We observe a single condensin complex at the stem of extruded DNA loops, where the neck size of the DNA loop correlates with the width of the condensin complex. The results are indicative of a type of scrunching model in which condensin extrudes DNA by a cyclic switching of its conformation between O and B shapes.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/ultraestrutura , DNA Fúngico/química , DNA Fúngico/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Microscopia de Força Atômica , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Mol Biol ; 361(5): 839-49, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16890955

RESUMO

The motor protein SecA drives the translocation of (pre-)proteins across the SecYEG channel in the bacterial cytoplasmic membrane by nucleotide-dependent cycles of conformational changes often referred to as membrane insertion/de-insertion. Despite structural data on SecA and an archaeal homolog of SecYEG, the identity of the sites of interaction between SecA and SecYEG are unknown. Here, we show that SecA can be cross-linked to several residues in cytoplasmic loop 5 (C5) of SecY, and that SecA directly interacts with a part of transmembrane segment 4 (TMS4) of SecY that is buried in the membrane region of SecYEG. Mutagenesis of either the conserved Arg357 in C5 or Glu176 in TMS4 interferes with the catalytic activity of SecA but not with binding of SecA to SecYEG. Our data explain how conformational changes in SecA could be directly coupled to the previously proposed opening mechanism of the SecYEG channel.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Arginina/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cisteína/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/química , Glutamina/metabolismo , Cinética , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Mutagênese , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade
4.
Trends Microbiol ; 14(3): 105-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16490356

RESUMO

The Sec machinery facilitates the translocation of proteins across and into biological membranes. In several of the Proteobacteria, this machinery contains accessory features that are not present in any other bacterial division. The genomic distribution of these features in the context of bacterial phylogeny suggests that the Sec machinery has evolved in discrete steps. The canonical Sec machinery was initially supplemented with SecB; subsequently, SecE was extended with two transmembrane segments and, finally, SecM was introduced. The Sec machinery of Escherichia coli and other Enterobacteriales represents the end product of this stepwise evolution.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Proteobactérias/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Sequência Conservada , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Dados de Sequência Molecular , Filogenia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteobactérias/fisiologia , Canais de Translocação SEC , Proteínas SecA , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
5.
J Biol Chem ; 280(42): 35255-60, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16115882

RESUMO

The ATPase SecA provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. SecA exists as a dimer in solution, but the exact oligomeric state of SecA during membrane binding and preprotein translocation is a topic of debate. To study the requirements of oligomeric changes in SecA during protein translocation, a non-dissociable SecA dimer was formed by oxidation of the carboxyl-terminal cysteines. The cross-linked SecA dimer interacts with the SecYEG complex with a similar stoichiometry as non-cross-linked SecA. Cross-linking reversibly disrupts the SecB binding site on SecA. However, in the absence of SecB, the activity of the disulfide-bonded SecA dimer is indistinguishable from wild-type SecA. Moreover, SecYEG binding stabilizes a cold sodium dodecylsulfate-resistant dimeric state of SecA. The results demonstrate that dissociation of the SecA dimer is not an essential feature of the protein translocation reaction.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Cisteína/química , Citoplasma/metabolismo , Dimerização , Dissulfetos/química , Relação Dose-Resposta a Droga , Cinética , Mutação , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Dodecilsulfato de Sódio/química , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Ureia/farmacologia
6.
FEBS Lett ; 527(1-3): 159-65, 2002 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12220653

RESUMO

Protein translocation across the cytoplasmic membrane of Escherichia coli is mediated by the integral membrane complex SecYEG and the peripherally bound ATPase SecA. To probe the environment of the cytoplasmic domains of SecY within the SecYEG complex, we introduced single cysteine residues in each of the six cytoplasmic domains. Neighbouring SecY molecules with a single cysteine residue in cytoplasmic domains C1, C2 or C6 formed a disulfide bond upon oxidation. The presence of the disulfide bond between two C2 domains reversibly inhibited protein translocation. Chemical crosslinking showed that the C2 and C3 domains are in close proximity of SecG and chemical modification of the cysteine residue in the C5 domain with N-ethyl-maleimide or fluorescein-5-maleimide inactivates the SecYEG complex. Taken together, our data give novel insights in the interactions between subunits of the SecYEG complex and emphasise the importance of cytoplasmic domain C5 for SecY functioning.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Reagentes de Ligações Cruzadas/química , Cisteína/química , Citoplasma/metabolismo , Dissulfetos/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Etilmaleimida/química , Fluoresceínas/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Oxirredução , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA