Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Ophthalmol ; 97(2): 214-224, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30168271

RESUMO

PURPOSE: Glucocorticoids (GCs) are used as treatment in diabetic macular oedema, a condition caused by blood-retinal barrier (BRB) disruption. The proposed mechanisms by which GCs reduce macular oedema are indirect anti-inflammatory effects and inhibition of VEGF production, but direct effects on the BRB endothelium may be equally important. Here, we investigated direct effects of GCs on the endothelium to understand the specific pathways of GC action, to enable development of novel therapeutics lacking the adverse side-effects of the presently used GCs. METHODS: Primary bovine retinal endothelial cells (BRECs) were grown on Transwell inserts and treated with hydrocortisone (HC), dexamethasone (Dex) or triamcinolone acetonide (TA). Molecular barrier integrity of the BRB was determined by mRNA and protein expression, and barrier function was assessed using permeability assays. In addition, we investigated whether TA was able to prevent barrier disruption after stimulation with VEGF or cytokines. RESULTS: Treatment of BRECs with GCs resulted in upregulation of tight junction mRNA (claudin-5, occludin, ZO-1) and protein (claudin-5 and ZO-1). In functional assays, only TA strengthened the barrier function by reducing endothelial permeability. Moreover, TA was able to prevent cytokine-induced permeability in human retinal endothelial cells and VEGF-induced expression of plasmalemma vesicle-associated protein (PLVAP), a key player in VEGF-induced retinal vascular leakage. CONCLUSION: Glucocorticoids have differential effects in an experimental in vitro BRB model. TA is the most potent in improving barrier function, both at the molecular and functional levels, and TA prevents VEGF-induced expression of PLVAP.


Assuntos
Barreira Hematorretiniana/metabolismo , Endotélio Vascular/metabolismo , Edema Macular/tratamento farmacológico , Vasos Retinianos/metabolismo , Triancinolona Acetonida/farmacocinética , Animais , Permeabilidade Capilar , Bovinos , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Glucocorticoides/farmacocinética , Edema Macular/metabolismo , Edema Macular/patologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Junções Íntimas , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos
2.
Invest Ophthalmol Vis Sci ; 58(9): 3496-3505, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715583

RESUMO

Purpose: Proinflammatory cytokines such as tumor necrosis factor (TNFα) may have a causative role in blood-retinal barrier (BRB) disruption, which is an essential step in the development of diabetic macular edema. The purpose of our study was to determine whether TNFα increases permeability in an in vitro model of the BRB and to explore the mechanisms involved. Methods: Primary bovine retinal endothelial cells (BRECs) were grown on Transwell inserts and cells were stimulated with TNFα or a combination of TNFα, IL1ß, and VEGF. Molecular barrier integrity of the BRB was determined by gene and protein expression of BRB-specific components, and barrier function was assessed using permeability assays. Results: TNFα reduced the expression of tight and adherens junctions in BRECs. Permeability for a 376 Da molecular tracer was increased after TNFα stimulation, but not for larger tracers. We found that 3',5'-cyclic adenosine monophosphate (cAMP) stabilized the barrier properties of BRECs, and that TNFα significantly decreased intracellular cAMP levels. When BRECs were preincubated with a membrane-permeable cAMP analog, the effects of TNFα on claudin-5 expression and permeability were mitigated. The effects of TNFα on barrier function in BRECs were largely independent of the small Rho guanosine triphosphate (GTP)ases RhoA and Rac1, which is in contrast to TNFα effects on the nonbarrier endothelium. The combination of TNFα, IL1ß, and VEGF increased permeability for a 70 kDa-FITC tracer, also mediated by cAMP. Conclusions: TNFα alone, or in combination with IL1ß and VEGF, induces permeability of the BRB in vitro for differently sized molecular tracers mediated by cAMP, but independently of Rho/Rac signaling.


Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , AMP Cíclico/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Barreira Hematorretiniana/fisiologia , Caderinas/genética , Bovinos , Células Cultivadas , Claudina-5/genética , Combinação de Medicamentos , Células Endoteliais/efeitos dos fármacos , Técnica Indireta de Fluorescência para Anticorpo , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-1beta/farmacologia , Modelos Biológicos , RNA Mensageiro/genética , Vasos Retinianos/citologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteína da Zônula de Oclusão-1/genética , beta Catenina/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
J Leukoc Biol ; 102(4): 993-1001, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28724696

RESUMO

Leukostasis in the retinal microvasculature in animal model studies of diabetes is associated with the development of diabetes-like retinopathy. Therefore, it is generally assumed that adhesion of leukocytes is a central event inciting a chronic, low-grade form of inflammation that causes the vascular abnormalities that are specific for the early stages of diabetic retinopathy (DR), which culminate in diabetic macular edema, proliferative DR, and vision loss in humans. Here, we review the literature critically with respect to leukostasis and assess its pathologic consequences in the human diabetic retina. First, we review the pathologic processes that are known to be involved in the development of human DR. Then, we summarize experimental evidence for the role of leukostasis in the development of DR and the mechanisms involved in leukostasis in the retina. Based on our critical review, we conclude that leukostasis may be an epiphenomenon of the diabetic retinal milieu, rather than a crucial, specific step in the development of human DR.


Assuntos
Retinopatia Diabética/imunologia , Leucostasia/imunologia , Edema Macular/imunologia , Retina/imunologia , Animais , Retinopatia Diabética/patologia , Humanos , Leucostasia/patologia , Edema Macular/patologia , Retina/patologia
4.
FASEB J ; 31(9): 3922-3933, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28522595

RESUMO

Histatins are multifunctional histidine-rich peptides secreted by the salivary glands and exclusively present in the saliva of higher primates, where they play a fundamental role in the protection of the oral cavity. Our previously published results demonstrated that histatin-1 (Hst1) promotes cell-substrate adhesion in various cell types and hinted that it could also be involved in cell-cell adhesion, a process of fundamental importance to epithelial and endothelial barriers. Here we explore the effects of Hst1 on cellular barrier function. We show that Hst1 improved endothelial barrier integrity, decreased its permeability for large molecules, and prevented translocation of bacteria across epithelial cell layers. These effects are mediated by the adherens junction protein E-cadherin (E-cad) and by the tight junction protein zonula occludens 1, as Hst1 increases the levels of zonula occludens 1 and of active E-cad. Hst1 may also promote epithelial differentiation as Hst1 induced transcription of the epithelial cell differentiation marker apolipoprotein A-IV (a downstream E-cad target). In addition, Hst1 counteracted the effects of epithelial-mesenchymal transition inducers on the outgrowth of oral cancer cell spheroids, suggesting that Hst1 affects processes that are implicated in cancer progression.-Van Dijk, I. A., Ferrando, M. L., van der Wijk, A.-E., Hoebe, R. A., Nazmi, K., de Jonge, W. J., Krawczyk, P. M., Bolscher, J. G. M., Veerman, E. C. I., Stap, J. Human salivary peptide histatin-1 stimulates epithelial and endothelial cell adhesion and barrier function.


Assuntos
Células Endoteliais/fisiologia , Células Epiteliais/fisiologia , Regulação da Expressão Gênica/fisiologia , Histatinas/metabolismo , Linhagem Celular , Histatinas/genética , Humanos
5.
Am J Pathol ; 186(4): 1044-54, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878208

RESUMO

Loss of blood-retinal barrier (BRB) properties induced by vascular endothelial growth factor (VEGF) and other factors is an important cause of diabetic macular edema. Previously, we found that the presence of plasmalemma vesicle-associated protein (PLVAP) in retinal capillaries associates with loss of BRB properties and correlates with increased vascular permeability in diabetic macular edema. In this study, we investigated whether absence of PLVAP protects the BRB from VEGF-induced permeability. We used lentiviral-delivered shRNA or siRNA to inhibit PLVAP expression. The barrier properties of in vitro BRB models were assessed by measuring transendothelial electrical resistance, permeability of differently sized tracers, and the presence of endothelial junction complexes. The effect of VEGF on caveolae formation was studied in human retinal explants. BRB loss in vivo was studied in the mouse oxygen-induced retinopathy model. The inhibition of PLVAP expression resulted in decreased VEGF-induced BRB permeability of fluorescent tracers, both in vivo and in vitro. PLVAP inhibition attenuated transendothelial electrical resistance reduction induced by VEGF in BRB models in vitro and significantly increased transendothelial electrical resistance of the nonbarrier human umbilical vein endothelial cells. Furthermore, PLVAP knockdown prevented VEGF-induced caveolae formation in retinal explants but did not rescue VEGF-induced alterations in endothelial junction complexes. In conclusion, PLVAP is an essential cofactor in VEGF-induced BRB permeability and may become an interesting novel target for diabetic macular edema therapy.


Assuntos
Barreira Hematorretiniana/metabolismo , Permeabilidade Capilar/fisiologia , Retinopatia Diabética/metabolismo , Retina/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/ultraestrutura , Animais , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Edema Macular/metabolismo , Edema Macular/patologia , Camundongos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA