Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Cancer J ; 13(1): 125, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591861

RESUMO

MYD88 is the key signaling adaptor-protein for Toll-like and interleukin-1 receptors. A somatic L265P mutation within the Toll/interleukin-1 receptor (TIR) domain of MYD88 is found in 90% of Waldenström macroglobulinemia cases and in a significant subset of diffuse large B-cell lymphomas. MYD88-L265P strongly promotes NF-κB pathway activation, JAK-STAT signaling and lymphoma cell survival. Previous studies have identified other residues of the TIR-domain crucially involved in NF-κB activation, including serine 257 (S257), indicating a potentially important physiological role in the regulation of MYD88 activation. Here, we demonstrate that MYD88 S257 is phosphorylated in B-cell lymphoma cells and that this phosphorylation is required for optimal TLR-induced NF-κB activation. Furthermore, we demonstrate that a phosphomimetic MYD88-S257D mutant promotes MYD88 aggregation, IRAK1 phosphorylation, NF-κB activation and cell growth to a similar extent as the oncogenic L265P mutant. Lastly, we show that expression of MYD88-S257D can rescue cell growth upon silencing of endogenous MYD88-L265P expression in lymphoma cells addicted to oncogenic MYD88 signaling. Our data suggest that the L265P mutation promotes TIR domain homodimerization and NF-κB activation by copying the effect of MY88 phosphorylation at S257, thus providing novel insights into the molecular mechanism underlying the oncogenic activity of MYD88-L265P in B-cell malignancies.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B , Fosforilação
2.
Commun Biol ; 6(1): 525, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188730

RESUMO

Vascular endothelial cells (ECs) form a dynamic interface between blood and tissue and play a crucial role in the progression of vascular inflammation. Here, we aim to dissect the system-wide molecular mechanisms of inflammatory endothelial-cytokine responses. Applying an unbiased cytokine library, we determined that TNFα and IFNγ induced the largest EC response resulting in distinct proteomic inflammatory signatures. Notably, combined TNFα + IFNγ stimulation induced an additional synergetic inflammatory signature. We employed a multi-omics approach to dissect these inflammatory states, combining (phospho-) proteome, transcriptome and secretome and found, depending on the stimulus, a wide-array of altered immune-modulating processes, including complement proteins, MHC complexes and distinct secretory cytokines. Synergy resulted in cooperative activation of transcript induction. This resource describes the intricate molecular mechanisms that are at the basis of endothelial inflammation and supports the adaptive immunomodulatory role of the endothelium in host defense and vascular inflammation.


Assuntos
Citocinas , Fator de Necrose Tumoral alfa , Humanos , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Proteômica , Multiômica , Inflamação/metabolismo , Endotélio Vascular
3.
Cells ; 11(7)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406648

RESUMO

Hypoxia is associated with increased erythropoietin (EPO) release to drive erythropoiesis. At high altitude, EPO levels first increase and then decrease, although erythropoiesis remains elevated at a stable level. The roles of hypoxia and related EPO adjustments are not fully understood, which has contributed to the formulation of the theory of neocytolysis. We aimed to evaluate the role of oxygen exclusively on erythropoiesis, comparing in vitro erythroid differentiation performed at atmospheric oxygen, a lower oxygen concentration (three percent oxygen) and with cultures of erythroid precursors isolated from peripheral blood after a 19-day sojourn at high altitude (3450 m). Results highlight an accelerated erythroid maturation at low oxygen and more concave morphology of reticulocytes. No differences in deformability were observed in the formed reticulocytes in the tested conditions. Moreover, hematopoietic stem and progenitor cells isolated from blood affected by hypoxia at high altitude did not result in different erythroid development, suggesting no retention of a high-altitude signature but rather an immediate adaptation to oxygen concentration. This adaptation was observed during in vitro erythropoiesis at three percent oxygen by a significantly increased glycolytic metabolic profile. These hypoxia-induced effects on in vitro erythropoiesis fail to provide an intrinsic explanation of the concept of neocytolysis.


Assuntos
Eritropoese , Eritropoetina , Aclimatação , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Humanos , Hipóxia , Oxigênio/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(4): 1976-1987, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31924745

RESUMO

Upon activation, fibrinogen forms large fibrin biopolymers that coalesce into clots which assist in wound healing. Limited insights into their molecular architecture, due to the sheer size and the insoluble character of fibrin clots, have restricted our ability to develop novel treatments for clotting diseases. The, so far resolved, disparate structural details have provided insights into linear elongation; however, molecular details like the C-terminal domain of the α-chain, the heparin-binding domain on the ß-chain, and other functional domains remain elusive. To illuminate these dark areas, we applied cross-linking mass spectrometry (XL-MS) to obtain biochemical evidence in the form of over 300 distance constraints and combined this with structural modeling. These restraints additionally define the interaction network of the clots and provide molecular details for the interaction with human serum albumin (HSA). We were able to construct the structural models of the fibrinogen α-chain (excluding two highly flexible regions) and the N termini of the ß-chain, confirm these models with known structural arrangements, and map how the structure laterally aggregates to form intricate lattices together with the γ-chain. We validate the final model by mapping mutations leading to impaired clot formation. From a list of 22 mutations, we uncovered structural features for all, including a crucial role for ßArg'169 (UniProt: 196) in lateral aggregation. The resulting model can potentially serve for research on dysfibrinogenemia and amyloidosis as it provides insights into the molecular mechanisms of thrombosis and bleeding disorders related to fibrinogen variants. The structure is provided in the PDB-DEV repository (PDBDEV_00000030).


Assuntos
Albuminas/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Fibrina/química , Fibrina/metabolismo , Espectrometria de Massas/métodos , Modelos Estruturais , Trombose/fisiopatologia , Albuminas/química , Fibrina/genética , Humanos , Mutação , Conformação Proteica
6.
Haematologica ; 104(7): 1460-1472, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30655368

RESUMO

Dominant-negative mutations in the transcription factor Growth Factor Independence-1B (GFI1B), such as GFI1BQ287*, cause a bleeding disorder characterized by a plethora of megakaryocyte and platelet abnormalities. The deregulated molecular mechanisms and pathways are unknown. Here we show that both normal and Q287* mutant GFI1B interacted most strongly with the lysine specific demethylase-1 - REST corepressor - histone deacetylase (LSD1-RCOR-HDAC) complex in megakaryoblasts. Sequestration of this complex by GFI1BQ287* and chemical separation of GFI1B from LSD1 induced abnormalities in normal megakaryocytes comparable to those seen in patients. Megakaryocytes derived from GFI1BQ287*-induced pluripotent stem cells also phenocopied abnormalities seen in patients. Proteome studies on normal and mutant-induced pluripotent stem cell-derived megakaryocytes identified a multitude of deregulated pathways downstream of GFI1BQ287* including cell division and interferon signaling. Proteome studies on platelets from GFI1BQ287* patients showed reduced expression of proteins implicated in platelet function, and elevated expression of proteins normally downregulated during megakaryocyte differentiation. Thus, GFI1B and LSD1 regulate a broad developmental program during megakaryopoiesis, and GFI1BQ287* deregulates this program through LSD1-RCOR-HDAC sequestering.


Assuntos
Transtornos da Coagulação Sanguínea/patologia , Plaquetas/patologia , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/patologia , Megacariócitos/patologia , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Transtornos da Coagulação Sanguínea/genética , Transtornos da Coagulação Sanguínea/metabolismo , Plaquetas/metabolismo , Diferenciação Celular , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Mapas de Interação de Proteínas , Proteoma/análise , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo
7.
Haematologica ; 101(3): 309-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26635035

RESUMO

It has been proposed that von Willebrand factor might affect factor VIII immunogenicity by reducing factor VIII uptake by antigen presenting cells. Here we investigate the interaction of recombinant von Willebrand factor with immature monocyte-derived dendritic cells using flow cytometry and confocal microscopy. Surprisingly, von Willebrand factor was not internalized by immature dendritic cells, but remained bound to the cell surface. As von Willebrand factor reduces the uptake of factor VIII, we investigated the repertoire of factor VIII presented peptides when in complex with von Willebrand factor. Interestingly, factor VIII-derived peptides were still abundantly presented on major histocompatibility complex class II molecules, even though a reduction of factor VIII uptake by immature dendritic cells was observed. Inspection of peptide profiles from 5 different donors showed that different core factor VIII peptide sequences were presented upon incubation with factor VIII/von Willebrand factor complex when compared to factor VIII alone. No von Willebrand factor peptides were detected when immature dendritic cells were pulsed with different concentrations of von Willebrand factor, confirming lack of von Willebrand factor endocytosis. Several von Willebrand factor derived peptides were recovered when cells were pulsed with von Willebrand factor/factor VIII complex, suggesting that factor VIII promotes endocytosis of small amounts of von Willebrand factor by immature dendritic cells. Taken together, our results establish that von Willebrand factor is poorly internalized by immature dendritic cells. We also show that von Willebrand factor modulates the internalization and presentation of factor VIII-derived peptides on major histocompatibility complex class II.


Assuntos
Células Dendríticas/imunologia , Fator VIII/imunologia , Cadeias HLA-DRB1/imunologia , Peptídeos/imunologia , Fator de von Willebrand/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno , Sítios de Ligação , Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Endocitose , Fator VIII/metabolismo , Cadeias HLA-DRB1/metabolismo , Humanos , Monócitos/citologia , Monócitos/imunologia , Peptídeos/química , Peptídeos/metabolismo , Cultura Primária de Células , Ligação Proteica , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Fator de von Willebrand/metabolismo
8.
J Biol Chem ; 287(11): 8327-35, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22267735

RESUMO

Galectin-8 (Gal8) interacts with ß-galactoside-containing glycoproteins and has recently been implicated to play a role in platelet activation. It has been suggested that Gal8 may also interact with platelet coagulation factor V (FV). This indispensable cofactor is stored in α-granules of platelets via a poorly understood endocytic mechanism that only exists in megakaryocytes (platelet precursor cells). In this study, we now assessed the putative role of Gal8 for FV biology. Surface plasmon resonance analysis and a solid phase binding assay revealed that Gal8 binds FV. The data further show that ß-galactosides block the interaction between FV and Gal8. These findings indicate that Gal8 specifically interacts with FV in a carbohydrate-dependent manner. Confocal microscopy studies and flow cytometry analysis demonstrated that megakaryocytic DAMI cells internalize FV. Flow cytometry showed that these cells express Gal8 on their cell surface. Reducing the functional presence of Gal8 on the cells either by an anti-Gal8 antibody or by siRNA technology markedly impaired the endocytic uptake of FV. Compatible with the apparent role of Gal8 for FV uptake, endocytosis of FV was also affected in the presence of ß-galactosides. Strikingly, thrombopoietin-differentiated DAMI cells, which represent a more mature megakaryocytic state, not only lose the capacity to express cell-surface bound Gal8 but also lose the ability to internalize FV. Collectively, our data reveal a novel role for the tandem repeat Gal8 in promoting FV endocytosis.


Assuntos
Endocitose/fisiologia , Fator V/metabolismo , Galectinas/metabolismo , Megacariócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Ligação Proteica/fisiologia , Trombopoetina/farmacologia
9.
Int J Biochem Cell Biol ; 43(8): 1114-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21497669

RESUMO

Factor VIII (FVIII) catabolism has been demonstrated to involve LDL receptor-related protein (LRP). We have established that antibody fragment KM33 inhibits cofactor function of FVIII by interacting with the membrane binding region 2092-2093 of the C1 domain. As KM33 also inhibits LRP-dependent uptake of FVIII, we now assessed the role of region 2092-2093 for LRP-dependent endocytosis. For this purpose, we employed functional fluorescent FVIII-YFP or -GFP derivatives and U87MG cells which express high levels of LRP. Confocal microscopy studies and flow cytometry analysis combined with siRNA technology showed that the fluorescent FVIII derivatives are indeed effectively internalized by U87MG cells in a LRP-dependent manner. Competition experiments employing an antagonist of the LDL receptor family members revealed that there is a cell surface binding event for FVIII, which is independent of LRP. Cell surface binding proved to be less effective for the FVIII-YFP variants K2092A, F2093A and K2092A/F2093A. Surface plasmon resonance analysis showed that these substitutions affect LRP binding as well. Finally, flow cytometry analysis revealed a major reduction of endocytic uptake of these FVIII-YFP variants. Our results demonstrate that C1 domain residues 2092-2093 are of major importance for FVIII endocytosis by contributing to cell surface binding and receptor binding.


Assuntos
Fator VIII/metabolismo , Lisina/metabolismo , Fenilalanina/metabolismo , Sítios de Ligação , Transporte Biológico , Linhagem Celular Tumoral , Endocitose , Fator VIII/química , Fator VIII/genética , Citometria de Fluxo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Lisina/química , Lisina/genética , Fenilalanina/química , Fenilalanina/genética , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA