Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 202(3): 383-392, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293914

RESUMO

Rationale: Mesenchymal stromal cell (MSC) therapy is a promising intervention for acute respiratory distress syndrome (ARDS), although trials to date have not investigated its use alongside extracorporeal membrane oxygenation (ECMO). Recent preclinical studies have suggested that combining these interventions may attenuate the efficacy of ECMO.Objectives: To determine the safety and efficacy of MSC therapy in a model of ARDS and ECMO.Methods: ARDS was induced in 14 sheep, after which they were established on venovenous ECMO. Subsequently, they received either endobronchial induced pluripotent stem cell-derived human MSCs (hMSCs) (n = 7) or cell-free carrier vehicle (vehicle control; n = 7). During ECMO, a low Vt ventilation strategy was employed in addition to protocolized hemodynamic support. Animals were monitored and supported for 24 hours. Lung tissue, bronchoalveolar fluid, and plasma were analyzed, in addition to continuous respiratory and hemodynamic monitoring.Measurements and Main Results: The administration of hMSCs did not improve oxygenation (PaO2/FiO2 mean difference = -146 mm Hg; P = 0.076) or pulmonary function. However, histological evidence of lung injury (lung injury score mean difference = -0.07; P = 0.04) and BAL IL-8 were reduced. In addition, hMSC-treated animals had a significantly lower cumulative requirement for vasopressor. Despite endobronchial administration, animals treated with hMSCs had a significant elevation in transmembrane oxygenator pressure gradients. This was accompanied by more pulmonary artery thromboses and adherent hMSCs found on explanted oxygenator fibers.Conclusions: Endobronchial hMSC therapy in an ovine model of ARDS and ECMO can impair membrane oxygenator function and does not improve oxygenation. These data do not recommend the safe use of hMSCs during venovenous ECMO.


Assuntos
Lesão Pulmonar Aguda/patologia , Oxigenação por Membrana Extracorpórea , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Aguda/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Adesão Celular , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas , Interleucina-8/imunologia , Pulmão/imunologia , Oxigenadores de Membrana , Artéria Pulmonar , Distribuição Aleatória , Respiração Artificial , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Ovinos , Carneiro Doméstico , Trombose/patologia , Vasoconstritores/uso terapêutico
2.
Perfusion ; 34(1_suppl): 15-21, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30966907

RESUMO

INTRODUCTION: Mesenchymal stem cells exhibit immunomodulatory properties which are currently being investigated as a novel treatment option for Acute Respiratory Distress Syndrome. However, the feasibility and efficacy of mesenchymal stem cell therapy in the setting of extracorporeal membrane oxygenation is poorly understood. This study aimed to characterise markers of innate immune activation in response to mesenchymal stem cells during an ex vivo simulation of extracorporeal membrane oxygenation. METHODS: Ex vivo extracorporeal membrane oxygenation simulations (n = 10) were conducted using a commercial extracorporeal circuit with a CO2-enhanced fresh gas supply and donor human whole blood. Heparinised circuits (n = 4) were injected with 40 × 106-induced pluripotent stem cell-derived human mesenchymal stem cells, while the remainder (n = 6) acted as controls. Simulations were maintained, under physiological conditions, for 240 minutes. Circuits were sampled at 15, 30, 60, 120 and 240 minutes and assessed for levels of interleukin-1ß, interleukin-6, interleukin-8, interleukin-10, tumour necrosis factor-α, transforming growth factor-ß1, myeloperoxidase and α-Defensin-1. In addition, haemoglobin, platelet and leukocyte counts were performed. RESULTS: There was a trend towards reduced levels of pro-inflammatory cytokines in mesenchymal stem cell-treated circuits and a significant increase in transforming growth factor-ß1. Blood cells and markers of neutrophil activation were reduced in mesenchymal stem cell circuits during the length of the simulation. As previously reported, the addition of mesenchymal stem cells resulted in a reduction of flow and increased trans-oxygenator pressures in comparison to controls. CONCLUSIONS: The addition of mesenchymal stem cells during extracorporeal membrane oxygenation may cause an increase in transforming growth factor-ß1. This is despite their ability to adhere to the membrane oxygenator. Further studies are required to confirm these findings.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Imunidade Inata/imunologia , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Humanos
3.
Thorax ; 74(2): 194-196, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29622695

RESUMO

Mesenchymal stem cells (MSCs) have attracted attention as a potential therapy for Acute Respiratory Distress Syndrome (ARDS). At the same time, the use of extracorporeal membrane oxygenation (ECMO) has increased among patients with severe ARDS. To date, early clinical trials of MSCs in ARDS have excluded patients supported by ECMO. Here we provide evidence from an ex-vivo model of ECMO to suggest that the intravascular administration of MSCs during ECMO may adversely impact the function of a membrane oxygenator. The addition of clinical grade MSCs resulted in a reduction of flow through the circuit in comparison to controls (0.6 ±0.35 L min-1vs 4.12 ± 0.03 L min-1, at 240 minutes) and an increase in the transoygenator pressure gradient (101±9 mmHg vs 21±4 mmHg, at 240 minutes). Subsequent immunohistochemistry analysis demonstrated quantities of MSCs highly adherent to membrane oxygenator fibres. This study highlights the potential harm associated with MSC therapy during ECMO and suggests further areas of research required to advance the translation of cell therapy in this population.


Assuntos
Oxigenação por Membrana Extracorpórea/efeitos adversos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Oxigenadores/efeitos adversos , Síndrome do Desconforto Respiratório/terapia , Animais , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Transplante de Células-Tronco Mesenquimais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA