Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 88(5): 1161-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24748404

RESUMO

Histological alterations often constitute a fingerprint of toxicity and diseases. The extent to which these alterations are cause or consequence of compromised organ function, and the underlying mechanisms involved is a matter of intensive research. In particular, liver disease is often associated with altered tissue microarchitecture, which in turn may compromise perfusion and functionality. Research in this field requires the development and orchestration of new techniques into standardized processing pipelines that can be used to reproducibly quantify tissue architecture. Major bottlenecks include the lack of robust staining, and adequate reconstruction and quantification techniques. To bridge this gap, we established protocols employing specific antibody combinations for immunostaining, confocal imaging, three-dimensional reconstruction of approximately 100-µm-thick tissue blocks and quantification of key architectural features. We describe a standard procedure termed 'liver architectural staining' for the simultaneous visualization of bile canaliculi, sinusoidal endothelial cells, glutamine synthetase (GS) for the identification of central veins, and DAPI as a nuclear marker. Additionally, we present a second standard procedure entitled 'S-phase staining', where S-phase-positive and S-phase-negative nuclei (stained with BrdU and DAPI, respectively), sinusoidal endothelial cells and GS are stained. The techniques include three-dimensional reconstruction of the sinusoidal and bile canalicular networks from the same tissue block, and robust capture of position, size and shape of individual hepatocytes, as well as entire lobules from the same tissue specimen. In addition to the protocols, we have also established image analysis software that allows relational and hierarchical quantifications of different liver substructures (e.g. cells and vascular branches) and events (e.g. cell proliferation and death). Typical results acquired for routinely quantified parameters in adult mice (C57Bl6/N) include the hepatocyte volume (5,128.3 ± 837.8 µm(3)) and the fraction of the hepatocyte surface in contact with the neighbouring hepatocytes (67.4 ± 6.7 %), sinusoids (22.1 ± 4.8 %) and bile canaliculi (9.9 ± 3.8 %). Parameters of the sinusoidal network that we also routinely quantify include the radius of the sinusoids (4.8 ± 2.25 µm), the branching angle (32.5 ± 11.2°), the length of intersection branches (23.93 ± 5.9 µm), the number of intersection nodes per mm(3) (120.3 × 103 ± 42.1 × 10(3)), the average length of sinusoidal vessel per mm(3) (5.4 × 10(3) ± 1.4 × 10(3)mm) and the percentage of vessel volume in relation to the whole liver volume (15.3 ± 3.9) (mean ± standard deviation). Moreover, the provided parameters of the bile canalicular network are: length of the first-order branches (7.5 ± 0.6 µm), length of the second-order branches (10.9 ± 1.8 µm), length of the dead-end branches (5.9 ± 0.7 µm), the number of intersection nodes per mm(3) (819.1 × 10(3) ± 180.7 × 10(3)), the number of dead-end branches per mm(3) (409.9 × 10(3) ± 95.6 × 10(3)), the length of the bile canalicular network per mm(3) (9.4 × 10(3) ± 0.7 × 10(3) mm) and the percentage of the bile canalicular volume with respect to the total liver volume (3.4 ± 0.005). A particular strength of our technique is that quantitative parameters of hepatocytes and bile canalicular as well as sinusoidal networks can be extracted from the same tissue block. Reconstructions and quantifications performed as described in the current protocols can be used for quantitative mathematical modelling of the underlying mechanisms. Furthermore, protocols are presented for both human and pig livers. The technique is also applicable for both vibratome blocks and conventional paraffin slices.


Assuntos
Canalículos Biliares/citologia , Processamento de Imagem Assistida por Computador/métodos , Fígado/irrigação sanguínea , Coloração e Rotulagem/métodos , Animais , Especificidade de Anticorpos , Dipeptidil Peptidase 4/imunologia , Hepatócitos/citologia , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Fígado/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Microcirculação , Inclusão em Parafina , Controle de Qualidade , Reprodutibilidade dos Testes , Suínos
2.
Histochem Cell Biol ; 134(5): 469-81, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20886225

RESUMO

Signaling through the Wnt/ß-catenin pathway is a crucial determinant of hepatic zonal gene expression, liver development, regeneration, and tumorigenesis. Transgenic mice with hepatocyte-specific knockout of Ctnnb1 (encoding ß-catenin) have proven their usefulness in elucidating these processes. We now found that a small number of hepatocytes escape the Cre-mediated gene knockout in that mouse model. The remaining ß-catenin-positive hepatocytes showed approximately 25% higher cell volumes compared to the ß-catenin-negative cells and exhibited a marker protein expression profile similar to that of normal perivenous hepatocytes or hepatoma cells with mutationally activated ß-catenin. Surprisingly, the expression pattern was observed independent of the cell's position within the liver lobule, suggesting a malfunction of physiological periportal repression of perivenously expressed genes in ß-catenin-deficient liver. Clusters of ß-catenin-expressing hepatocytes lacked expression of the gap junction proteins Connexin 26 and 32. Nonetheless, ß-catenin-positive hepatocytes had no striking proliferative advantage, but started to grow out on treatment with phenobarbital, a tumor-promoting agent known to facilitate the formation of mouse liver adenoma with activating mutations of Ctnnb1. Progressive re-population of Ctnnb1 knockout livers with wild-type hepatocytes was seen in aged mice with a pre-cirrhotic phenotype. In these large clusters of ß-catenin-expressing hepatocytes, perivenous-specific gene expression was re-established. In summary, our data demonstrate that the zone-specificity of a hepatocyte's gene expression profile is dependent on the presence of ß-catenin, and that ß-catenin provides a proliferative advantage to hepatocytes when promoted with phenobarbital, or in a pre-cirrhotic environment.


Assuntos
Hepatócitos/patologia , beta Catenina/metabolismo , Animais , Carcinógenos/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Separação Celular , Tamanho Celular , Conexinas/deficiência , Citocromo P-450 CYP2E1/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Expressão Gênica , Glutamato-Amônia Ligase/metabolismo , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Fenobarbital/farmacologia , Fenótipo , RNA Mensageiro/metabolismo , beta Catenina/genética
3.
Biol Chem ; 391(1): 73-83, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20064087

RESUMO

Recently, epithelial to mesenchymal transition (EMT) has been shown to represent a feature of dedifferentiating hepatocytes in vitro. Three-dimensional soft collagen gels can antagonize but not completely abolish this effect. Hormonal additives to culture media are known to maintain differentiated hepatocyte functions. Therefore, we studied whether insulin and dexamethasone antagonize EMT in cultured hepatocytes. Both hormones antagonized but not completely abolished certain morphological features of EMT. Dexamethasone antagonized acquisition of fibroblastoid shape, whereas insulin favored bile canaliculi formation. In a subsequent step, we analyzed expression of a battery of EMT-related genes. Of all markers tested, vimentin and snail-1 correlated best with morphological features of EMT. Interestingly, dexamethasone reduced expression levels of both vimentin and snail-1, whereas the influence of insulin was less pronounced. An important result of this study is that 12 out of 17 analyzed EMT markers were transcriptionally influenced by dexamethasone (vimentin, snail-1, snail-2, HNF4 alpha, Twist-1, ZEB2, fibronectin, occludin, MMP14, claudin-1, cytokeratin-8, and cytokeratin-18), whereas the remaining factors seemed to be less dependent on dexamethasone. In conclusion, EMT markers in hepatocytes can be classified as dexamethasone-dependent versus -independent.


Assuntos
Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/fisiologia , Dexametasona/farmacologia , Células Epiteliais/citologia , Hepatócitos/citologia , Animais , Hepatócitos/efeitos dos fármacos , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia de Contraste de Fase , Transdução de Sinais/efeitos dos fármacos , Vimentina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA