Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063073

RESUMO

Secondary lymphedema is caused by damage to the lymphatic system from surgery, cancer treatment, infection, trauma, or obesity. This damage induces stresses such as oxidative stress and hypoxia in lymphatic tissue, impairing the lymphatic system. In response to damage, vascular endothelial growth factor C (VEGF-C) levels increase to induce lymphangiogenesis. Unfortunately, VEGF-C often fails to repair the lymphatic damage in lymphedema. The underlying mechanism contributing to lymphedema is not well understood. In this study, we found that surgery-induced tail lymphedema in a mouse model increased oxidative damage and cell death over 16 days. This corresponded with increased VEGF-C levels in mouse tail lymphedema tissue associated with macrophage infiltration. Similarly, in the plasma of patients with secondary lymphedema, we found a positive correlation between VEGF-C levels and redox imbalance. To determine the effect of oxidative stress in the presence or absence of VEGF-C, we found that hydrogen peroxide (H2O2) induced cell death in human dermal lymphatic endothelial cells (HDLECs), which was potentiated by VEGF-C. The cell death induced by VEGF-C and H2O2 in HDLECs was accompanied by increased reactive oxygen species (ROS) levels and a loss of mitochondrial membrane potential. Antioxidant pre-treatment rescued HDLECs from VEGF-C-induced cell death and decreased ROS under oxidative stress. As expected, VEGF-C increased the number of viable and proliferating HDLECs. However, upon H2O2 treatment, VEGF-C failed to increase either viable or proliferating cells. Since oxidative stress leads to DNA damage, we also determined whether VEGF-C treatment induces DNA damage in HDLECs undergoing oxidative stress. Indeed, DNA damage, detected in the form of gamma H2AX (γH2AX), was increased by VEGF-C under oxidative stress. The potentiation of oxidative stress damage induced by VEFG-C in HDLECs was associated with p53 activation. Finally, the inhibition of vascular endothelial growth factor receptor-3 (VEGFR-3) activation blocked VEGF-C-induced cell death following H2O2 treatment. These results indicate that VEGF-C further sensitizes lymphatic endothelial cells to oxidative stress by increasing ROS and DNA damage, potentially compromising lymphangiogenesis.


Assuntos
Apoptose , Dano ao DNA , Células Endoteliais , Peróxido de Hidrogênio , Linfedema , Mitocôndrias , Estresse Oxidativo , Fator C de Crescimento do Endotélio Vascular , Fator C de Crescimento do Endotélio Vascular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Linfedema/metabolismo , Linfedema/patologia , Linfedema/etiologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linfangiogênese/efeitos dos fármacos , Feminino
2.
Mem. Inst. Oswaldo Cruz ; 100(supl.1): 107-110, Mar. 2005.
Artigo em Inglês | LILACS | ID: lil-402184

RESUMO

Edema is a consistent observation in inflamatory bowel disease (IBD), and immune responses are inevitable in inflammation. Because the lymphatic system is an integral part of both tissue fluid homeostasis and immune reactions, it is likely that lymphatics play a role in the complex etiology of IBD. Despite the consistent findings that the lymphatic system is altered during gastrointestinal inflammation, the majority of studies conducted on the disease only mention the lymphatic system in passing. The effects of inflammatory mediators on lymphatic vessel function also remain poorly defined, despite its essential role in immunity and prevention of tissue edema. Processes allowing effective lymph transport are altered during inflammation, however, the mode of alteration and reason why lymphatics are ineffective in inflammatory reactions need to be further investigated. In addition, these processes have not yet been examined in an appropriate animal model and little has been done using in vivo methods of investigation in any model of gastrointestinal inflammation. This paper reviews the role of the lymphatic system in intestinal inflammation, as well as the role of the inflammatory products in mediating lymphatic contractile function.


Assuntos
Animais , Humanos , Doenças Inflamatórias Intestinais/fisiopatologia , Vasos Linfáticos/fisiologia , Edema/etiologia , Edema/fisiopatologia , Doenças Inflamatórias Intestinais/etiologia , Prostaglandinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA