Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 134: 109242, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32517919

RESUMO

Mediterranean herbs, specially thyme and rosemary, are important ingredients in food preparation and more recently have been studied as natural sources of bioactive compounds. This study aimed to study the effect of matrix (thyme vs. rosemary), and extraction protocol (conventional extraction vs. ultrasound assisted extraction) solvent composition (water vs. 50:50 ethanol:water solution) on the extraction of high value compounds (phenolic compounds, flavonoids and carotenoids) and also explore the antioxidant, antimicrobial (Listeria innocua, Staphylococcus aureus, and Salmonella enterica), probiotic (Lactobacillus casei and Bifidobacterium lactis), and anti-inflammatory activities. The phenolic, flavonoid and carotenoid content of extracts was greatly influenced by extraction conditions wherein the ultrasound pre-treatment improved the extraction of carotenoids but induced the opposite effect for polyphenols and flavonoids in both herbs. Only the aqueous extract of thyme obtained from ultrasound pre-treatment was the only extract that inhibited the growth of potentially pathogenic bacteria, stimulated the probiotic bacteria and achieved high anti-inflammatory and antioxidant activity. Moreover, this extract also was rich on phenolic compounds (such as p-coumaric acid 4-O-glucoside, kaempferol 3-O-rutinoside, feruloyl glucose, and 4-vinylguaiacol) and carotenoids. Therefore, ultrasound extraction of bioactive compounds with water as solvent could be explored in food and pharmaceutical applications.

2.
Gut Microbes ; 11(4): 962-978, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32167021

RESUMO

Nutrition during pregnancy plays an important role in maternal-neonatal health. However, the impact of specific dietary components during pregnancy on maternal gut microbiota and the potential effects on neonatal microbiota and infant health outcomes in the short term are still limited. A total of 86 mother-neonate pairs were enrolled in this study. Gut microbiota profiling on maternal-neonatal stool samples at birth was carried out by 16S rRNA gene sequencing using Illumina. Maternal dietary information and maternal-neonatal clinical and anthropometric data were recorded during the first 18 months. Longitudinal Body Mass Index (BMI) and Weight-For-Length (WFL) z-score trajectories using the World Health Organization (WHO) curves were obtained. The maternal microbiota was grouped into two distinct microbial clusters characterized by Prevotella (Cluster I) and by the Ruminococcus genus (Cluster II). Higher intakes of total dietary fiber, omega-3 fatty acids, and polyphenols were observed in Cluster II compared to Cluster I. Higher intakes of plant-derived components were associated with a higher presence of the Christensellaceae family, Dehalobacterium and Eubacterium, and lower amounts of the Dialister and Campylobacter species. Maternal microbial clusters were also linked to neonatal microbiota and infant growth in a birth-dependent manner. C-section neonates from Cluster I showed the highest BMI z-score at age 18 months, along with a higher risk of overweight. Longitudinal BMI and WL z-score trajectories from birth to 18 months were shaped by maternal microbial cluster, diet, and birth mode. Diet was an important perinatal factor in early life that may impact maternal microbiota; in particular, fiber, lipids and proteins, and exert a significant effect on the neonatal microbiome and contribute to infant development during the first months of life. ABBREVIATIONS: NCDs: Non-Communicable Diseases, C-section: Cesarean Section, BMI: Body Mass Index; WL: Weight for length; EPA: Eicosapentanoic Acid; DHA: Docosahexaenoic Acid; DPA: Docosapentaenoic Acid; SCFA: Short Chain Fatty Acids; MD: Mediterranean Diet; FFQ: Food Frequency Questionnaire; CHI: Calinski Harabasz Index.

3.
Nutrients ; 11(11)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694290

RESUMO

BACKGROUND: Own mother's milk (OMM) is the optimal nutrition for preterm infants. However, pasteurized donor human milk (DHM) is a valid alternative. We explored the differences of the transcriptome in exfoliated epithelial intestinal cells (EEIC) of preterm infants receiving full feed with OMM or DHM. METHODS: The prospective observational study included preterm infants ≤ 32 weeks' gestation and/or ≤1500 g birthweight. Total RNA from EEIC were processed for genome-wide expression analysis. RESULTS: Principal component analysis and unsupervised hierarchical clustering analysis revealed two clustered groups corresponding to the OMM and DHM groups that showed differences in the gene expression profile in 1629 transcripts. The OMM group overexpressed lactalbumin alpha gene (LALBA), Cytochrome C oxidase subunit I gene (COX1) and caseins kappa gene (CSN3), beta gene (CSN2) and alpha gene (CSN1S1) and underexpressed Neutrophil Cytosolic Factor 1 gene (NCF1) compared to the DHM group. CONCLUSIONS: The transcriptomic analysis of EEIC showed that OMM induced a differential expression of specific genes that may contribute to a more efficient response to a pro-oxidant challenge early in the postnatal period when preterm infants are at a higher risk of oxidative stress. The use of OMM should be strongly promoted in preterm infants.


Assuntos
Células Epiteliais/metabolismo , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Leite Humano/metabolismo , Transcriptoma/genética , Caseínas/metabolismo , Ciclo-Oxigenase 1/metabolismo , Feminino , Expressão Gênica , Idade Gestacional , Humanos , Recém-Nascido , Mucosa Intestinal/citologia , Lactalbumina/metabolismo , Masculino , Bancos de Leite , NADPH Oxidases/metabolismo , Estresse Oxidativo/genética , Análise de Componente Principal , Estudos Prospectivos
4.
Nutrients ; 11(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623169

RESUMO

Walnuts are rich in polyphenols ellagitannins, modulate gut microbiota (GM), and exert health benefits after long-term consumption. The metabolism of ellagitannins to urolithins via GM depends on urolithin metabotypes (UM-A, -B, or -0), which have been reported to predict host responsiveness to a polyphenol-rich intervention. This study aims to assess whether UMs were associated with differential GM modulation after short-term walnut consumption. In this study, 27 healthy individuals consumed 33 g of peeled raw walnuts over three days. GM profiling was determined using 16S rRNA illumina sequencing and specific real-time quantitative polymerase chain reactions (qPCRs), as well as microbial activity using short-chain fatty acids analysis in stool samples. UMs stratification of volunteers was assessed using ultra performance liquid chromatography-electro spray ionization-quadrupole time of flight-mass spectrometry (UPLC-ESI-QTOF-MS) analysis of urolithins in urine samples. The gut microbiota associated with UM-B was more sensitive to the walnut intervention. Blautia, Bifidobacterium, and members of the Coriobacteriaceae family, including Gordonibacter, increased exclusively in UM-B subjects, while some members of the Lachnospiraceae family decreased in UM-A individuals. Coprococcus and Collinsella increased in both UMs and higher acetate and propionate production resulted after walnuts intake. Our results show that walnuts consumption after only three days modulates GM in a urolithin metabotype-depending manner and increases the production of short-chain fatty acids (SCFA).


Assuntos
Bactérias/metabolismo , Cumarínicos/urina , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Taninos Hidrolisáveis/metabolismo , Juglans/metabolismo , Nozes/metabolismo , Adulto , Bactérias/classificação , Bactérias/genética , Biomarcadores/urina , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
5.
Expert Rev Proteomics ; 16(10): 805-814, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31482748

RESUMO

Introduction: Selenium plays many key roles in health especially in connection with cancer and neurodegenerative diseases. However, it needs to be appreciated that the essentiality/toxicity of selenium depends on both, a narrow range of concentration and the chemical specie involved. In this context, selenoproteins are essential biomolecules against these disorders, mainly due to its antioxidant action. To this end, analytical methodologies may allow identifying and quantifying individual selenospecies in human biofluids and tissues. Areas covered: This review focus on the role of selenoproteins in medicine, with special emphasis in cancer and neurodegenerative diseases, considering the possible link with gut microbiota. In particular, this article reviews the analytical techniques and procedures recently developed for the absolute quantification of selenoproteins and selenometabolites in human biofluids and tissues. Expert commentary: The beneficial role of selenium in human health has been extensively studied and reviewed. However, several challenges remain unsolved as discussed in this article: (i) speciation of selenium (especially selenoproteins) in cancer and neurodegenerative disease patients; (ii) supplementation of selenium in humans using functional foods and nutraceuticals; (iii) the link between selenium and selenoproteins expression and the gut microbiota and (iv) analytical methods and pitfalls for the absolute quantification of selenoproteins and selenometabolites.

6.
Nutrients ; 11(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484413

RESUMO

The metabolism of dietary polyphenols ellagitannins by the gut-microbiota allows the human stratification in urolithin metabotypes depending on the final urolithins produced. Metabotype-A only produces urolithin-A, metabotype-B yields urolithin-B and isourolithin-A in addition to urolithin-A, and metabotype 0 does not produce urolithins. Metabotype-A has been suggested to be 'protective', and metabotype-B dysbiotic-prone to cardiometabolic impairments. We analyzed the gut-microbiome of 40 healthy women and determined their metabotypes and enterotypes, and their associations with anthropometric and gut-microbial changes after 3 weeks, 4, 6, and 12 months postpartum. Metabotype-A was predominant in mothers who lost weight (≥2 kg) (75%) versus metabotype-B (54%). After delivery, the microbiota of metabotype-A mothers changed, unlike metabotype-B, which barely changed over 1 year. The metabotype-A discriminating bacteria correlated to the decrease of the women's waist while some metabotype-B bacteria were inversely associated with a reduction of body mass index (BMI), waist, and waist-to-hip ratio. Metabotype-B was associated with a more robust and less modulating microbial and anthropometric profiles versus metabotype-A, in which these profiles were normalized through the 1-year follow-up postpartum. Consequently, urolithin metabotypes assessment could be a tool to anticipate the predisposition of women to normalize their anthropometric values and gut-microbiota, significantly altered during pregnancy and after childbirth.


Assuntos
Cumarínicos/metabolismo , Microbioma Gastrointestinal/fisiologia , Período Pós-Parto , Adulto , Antropometria , Feminino , Humanos , Taninos Hidrolisáveis/metabolismo , Fatores de Tempo
7.
Transl Oncol ; 12(8): 1122-1130, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31176994

RESUMO

Gastrointestinal toxicity is a frequently observed adverse event during cancer treatment with traditional chemotherapeutics. Currently, traditional chemotherapeutics are often combined with targeted biologic agents. These biologics, however, possess a distinct toxicity profile, and they may also exacerbate the adverse effects of traditional chemotherapeutics. In this study, we aimed to characterize the gastrointestinal and metabolic changes after a 2-week treatment period with aflibercept, an antiangiogenic VEGFR decoy, and with erlotinib, a tyrosine-kinase inhibitor. Male rats were treated either with aflibercept or erlotinib for 2 weeks. During the 2-week treatment period, the animals in the aflibercept group received two subcutaneous doses of 25 mg/kg aflibercept. The erlotinib group got 10 mg/kg of erlotinib by oral gavage every other day. The control groups were treated similarly but received either saline injections or oral gavage of water. Intestinal toxicity was assessed by measuring intestinal permeability and by histological analyses of intestinal tissues. Metabolic changes were measured with 1H nuclear magnetic resonance in serum and urine. Neither aflibercept nor erlotinib induced changes in intestinal permeability or intestinal tissue morphology. However, aflibercept treatment resulted in stunted body weight gain and altered choline, amino acid, and lipid metabolism. Two-week treatment with aflibercept or erlotinib alone does not induce observable changes in gastrointestinal morphology and function. However, observed aflibercept-treatment related metabolic changes suggest alterations in intestinal microbiota, nutrient intake, and adipose tissue function. The metabolic changes are also interesting in respect to the systemic effects of aflibercept and their possible associations with adverse events caused by aflibercept administration.

8.
Food Funct ; 10(1): 140-150, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30499575

RESUMO

Human milk, the best food for infants, is a dynamic and complex fluid that directly influences the immune system and microbiota establishment. The protective role of human milk is well known although the mechanisms behind it still need to be uncovered. This study aimed to characterize the impact of human milk in the immature intestine of newborns by analyzing the global transcriptomic response of the FHs 74 int cell line (ATCC CCL-241). The expression of intestinal keratins and other genes with a well-annotated intestinal or epithelial function validated FHs 74 int derived from the fetal small intestine as a model of the intestinal epithelium of newborns. Cells exposed to skimmed human milk showed seventeen differentially expressed genes, most of them up-regulated, including four chemokine genes (CXCL1, CXCL2, CXCL3 and CXCL10) and other immune-related genes. qRT-PCR and ELISA analysis confirmed the microarray data and indicated a different pattern of expression upon milk exposure in FHs 74 int as compared to the adult tumorigenic Caco-2 cell line. The evaluation of the functional significance of these transcriptomic changes reveals that human milk exposure may contribute to the regulation of the inflammatory response in the intestine during the perinatal period, which is characterized by the immaturity of the immune system and a pro-inflammatory phenotype.


Assuntos
Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Leite Humano/metabolismo , Transcriptoma , Células CACO-2 , Linhagem Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Regulação para Cima
9.
Mol Nutr Food Res ; 63(4): e1800958, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471188

RESUMO

SCOPE: The gut microbiota ellagitannin-metabolizing phenotypes (i.e., urolithin metabotypes [UMs]) are proposed as potential cardiovascular disease (CVD) risk biomarkers because the host blood lipid profile is reported to be associated with specific UMs. However, the link for this association remains unknown so far. METHODS AND RESULTS: The gut microbiome of 249 healthy individuals is analyzed using 16S rDNA sequencing analysis. Individuals are also stratified by UMs (UM-A, UM-B, and UM-0) and enterotypes (Bacteroides, Prevotella, and Ruminococcus). Associations of UMs discriminating bacteria with CVD risk markers are investigated. Distribution and gut microbiota composition of UMs and enterotypes are not coincident. Almost half of the discriminating genera between UM-A and UM-B belongs to the Coriobacteriaceae family. UM-B individuals present higher blood cholesterol levels and higher alpha-diversity, including Coriobacteriaceae family, than those of UM-A. Coriobacteriaceae, whose abundance is the highest in UM-B, is positively correlated with total cholesterol, LDL cholesterol, and body mass index. CONCLUSIONS: Results herein suggest that the family Coriobacteriaceae could be a link between individuals' UMs and their blood cholesterol levels. Further research is needed to explore the mechanisms of the host metabolic phenotype, including cholesterol excretion products, to modulate this bacterial family.


Assuntos
Doenças Cardiovasculares/microbiologia , Cumarínicos/metabolismo , Microbioma Gastrointestinal/fisiologia , Microbiota/fisiologia , Sobrepeso/microbiologia , Adulto , Idoso , Doenças Cardiovasculares/sangue , Colesterol/sangue , Fezes/microbiologia , Feminino , Humanos , Taninos Hidrolisáveis/metabolismo , Juglans , Lythraceae , Masculino , Pessoa de Meia-Idade , Sobrepeso/dietoterapia
10.
PLoS One ; 13(11): e0207016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395655

RESUMO

OBJECTIVE: We investigated the association between bacterial microbiota in breast milk and the infant mouth. The influence of human papilloma virus (HPV) infection on infant oral microbiota was also assessed. MATERIAL AND METHODS: Altogether 35 breast milk and 35 infant oral samples with known HPV status were selected from the Finnish Family HPV Study cohort. In total, there were 31 mother-infant pairs. The microbiota composition was characterized by 16S rRNA gene sequencing (V3-V4 region). RESULTS: HPV DNA was present in 8.6% (3/35) of the breast milk and 40% (14/35) of the infant oral samples. Eight shared genera between breast milk and infant oral were found; these included Streptococcus, Staphylococcus, Unclassified Gemellaceae, Rothia, Veillonella, Haemophilus, Propionibacterium and Corynebacterium. HPV status was not associated with either microbiota richness or diversity in the infant mouth. However, the infant oral microbiota clustered in different groups according to HPV status. We detected higher abundance of Veillonella dispar (p = 0.048) at species level in HPV negative infant oral samples. We did not detect differences in the breast milk microbiota composition related to HPV infection due to only three HPV positive milk samples. CONCLUSIONS: HPV infection is associated with distinct oral bacterial microbiota composition in infants. The direction of causality underlying the phenomenon remains unclear.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Leite Humano/microbiologia , Mucosa Bucal/microbiologia , Infecções por Papillomavirus/patologia , Bactérias/genética , Biodiversidade , Estudos de Coortes , Análise Discriminante , Feminino , Finlândia , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Veillonella/genética , Veillonella/isolamento & purificação
11.
Sci Rep ; 8(1): 9787, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955075

RESUMO

We investigated the association between HPV infection and bacterial microbiota composition in the placenta, uterine cervix and mouth in thirty-nine women. HPV DNA genotyping of 24 types was conducted using Multimetrix®. Microbiota composition was characterized by 16S rRNA gene sequencing. HPV DNA was detected in 33% of placenta, 23% cervical and 33% oral samples. HPV16 was the most frequent type in all regions. HPV infection was associated with higher microbiota richness (p = 0.032) in the mouth but did not influence microbial diversity or richness in other samples. HPV infection was associated with higher abundance of Lactobacillaceae (p = 0.0036) and Ureaplasma (LDA score > 4.0, p < 0.05) in the placenta, Haemophilus (p = 0.00058) and Peptostreptococcus (p = 0.0069) genus in the cervix and Selenomonas spp. (p = 0.0032) in the mouth compared to HPV negative samples. These data suggest altered bacterial microbiota composition in HPV positive placenta, cervix and mouth. Whether the changes in bacterial microbiota predispose or result from HPV remains to be determined in future studies.


Assuntos
Colo do Útero/microbiologia , Microbiota , Mucosa Bucal/microbiologia , Infecções por Papillomavirus/microbiologia , Placenta/microbiologia , DNA Viral/análise , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez
12.
Cancer Chemother Pharmacol ; 80(2): 317-332, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28646338

RESUMO

PURPOSE: Chemotherapy-induced gastrointestinal toxicity (CIGT) is a complex process that involves multiple pathophysiological mechanisms. We have previously shown that commonly used chemotherapeutics 5-fluorouracil, oxaliplatin, and irinotecan damage the intestinal mucosa and increase intestinal permeability to iohexol. We hypothesized that CIGT is associated with alterations in fecal microbiota and metabolome. Our aim was to characterize these changes and examine how they relate to the severity of CIGT. METHODS: A total of 48 male Sprague-Dawley rats were injected intraperitoneally either with 5-fluorouracil (150 mg/kg), oxaliplatin (15 mg/kg), or irinotecan (200 mg/kg). Body weight change was measured daily after drug administration and the animals were euthanized after 72 h. Blood, urine, and fecal samples were collected at baseline and at the end of the experiment. The changes in the composition of fecal microbiota were analyzed with 16S rRNA gene sequencing. Metabolic changes in serum and urine metabolome were measured with 1 mm proton nuclear magnetic resonance (1H-NMR). RESULTS: Irinotecan increased the relative abundance of Fusobacteria and Proteobacteria, while 5-FU and oxaliplatin caused only minor changes in the composition of fecal microbiota. All chemotherapeutics increased the levels of serum fatty acids and N(CH3)3 moieties and decreased the levels of Krebs cycle metabolites and free amino acids. CONCLUSIONS: Chemotherapeutic drugs, 5-fluorouracil, oxaliplatin, and irinotecan, induce several microbial and metabolic changes which may play a role in the pathophysiology of CIGT. The observed changes in intestinal permeability, fecal microbiota, and metabolome suggest the activation of inflammatory processes.


Assuntos
Camptotecina/análogos & derivados , Fluoruracila/toxicidade , Gastroenteropatias/induzido quimicamente , Microbiota/efeitos dos fármacos , Compostos Organoplatínicos/toxicidade , Animais , Antineoplásicos/toxicidade , Camptotecina/toxicidade , Fezes/microbiologia , Gastroenteropatias/microbiologia , Gastroenteropatias/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/metabolismo , Irinotecano , Espectroscopia de Ressonância Magnética , Masculino , Metaboloma/efeitos dos fármacos , Oxaliplatina , Permeabilidade , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
13.
J Pediatr Gastroenterol Nutr ; 64(5): 789-798, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27602704

RESUMO

OBJECTIVES: Human milk oligosaccharides (HMOs) are considered to play an important role for the infant. As the biotechnical production of some HMOs is feasible today and clinical studies are being designed, the individual variation of the total amount of HMOs and of single components is of particular importance. Our objectives were to investigate whether differences exist between term and preterm milk, milk from mothers with secretor or nonsecretor status, and a Lewis blood group (a+b-), (a-b+), or (a-b-) pattern. METHODS: Within a longitudinal study 96 milk samples (colostrum, transitional, and mature milk) from 32 mothers with preterm (n = 18) and term (n = 14) infants were collected. Delipidated and deproteinized milk was subjected to porous graphitized carbon cartridges followed by high pH anion exchange chromatography with pulsed amperometric detection. RESULTS: Quantitation of 16 single HMOs revealed changes during the first weeks of lactation without discrepancies between term and preterm milk. Significant differences occurred between "secretor" and "nonsecretor" milk (median approximately 10 vs 5 g/L total HMOs). Lacto-N-tetraose (LNT) and lacto-N-fucopentaose (LNFP) II comprised > 55% of the total HMO content in Lewis blood group (a+b-), "nonsecretor" milk and LNT together with 2'fucosyllactose, LNFP I, and difucosyllactose approximately 60% in Lewis (a-b+), "secretor" milk. In Lewis (a-b-), "secretor" milk 80% of oligosaccharides are due to LNT, 2'fucosyllactose, and LNFP I. CONCLUSIONS: There are marked differences in total HMOs and single HMOs in milk depending on Lewis blood group and secretor status, which need to be taken into account in clinical studies.


Assuntos
Idade Gestacional , Antígenos do Grupo Sanguíneo de Lewis , Leite Humano/química , Oligossacarídeos/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Estudos Longitudinais , Estudos Prospectivos
14.
Pediatrics ; 133(5): e1203-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24709930

RESUMO

BACKGROUND: Bacterial sepsis is associated with high morbidity and mortality in preterm infants. However, diagnosis of sepsis and identification of the causative agent remains challenging. Our aim was to determine genome-wide expression profiles of very low birth weight (VLBW) infants with and without bacterial sepsis and assess differences. METHODS: This was a prospective observational double-cohort study conducted in VLBW (<1500 g) infants with culture-positive bacterial sepsis and non-septic matched controls. Blood samples were collected as soon as clinical signs of sepsis were identified and before antibiotics were initiated. Total RNA was processed for genome-wide expression analysis using Affymetrix gene arrays. RESULTS: During a 19-month period, 17 septic VLBW infants and 19 matched controls were enrolled. First, a three-dimensional unsupervised principal component analysis based on the entire genome (28 000 transcripts) identified 3 clusters of patients based on gene expression patterns: Gram-positive sepsis, Gram-negative sepsis, and noninfected control infants. Furthermore, these groups were confirmed by using analysis of variance, which identified a transcriptional signature of 554 of genes. These genes had a significantly different expression among the groups. Of the 554 identified genes, 66 belonged to the tumor necrosis factor and 56 to cytokine signaling. The most significantly overexpressed pathways in septic neonates related with innate immune and inflammatory responses and were validated by real-time reverse transcription polymerase chain reaction. CONCLUSIONS: Our preliminary results suggest that genome-wide expression profiles discriminate septic from nonseptic VLBW infants early in the neonatal period. Further studies are needed to confirm these findings.


Assuntos
Infecções Bacterianas/genética , Estudo de Associação Genômica Ampla , Doenças do Prematuro/genética , Recém-Nascido de muito Baixo Peso , Sepse/genética , Transcriptoma/genética , Infecções Bacterianas/diagnóstico , Estudos de Coortes , Citocinas/genética , Diagnóstico Precoce , Feminino , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/genética , Humanos , Imunidade Inata/genética , Recém-Nascido , Doenças do Prematuro/diagnóstico , Masculino , Análise de Componente Principal , Estudos Prospectivos , Sepse/diagnóstico , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
15.
Appl Environ Microbiol ; 78(24): 8684-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042174

RESUMO

Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The ß-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Lactobacillus casei/enzimologia , Aminoaciltransferases/genética , Aderência Bacteriana , Proteínas de Bactérias/genética , Linhagem Celular , Biologia Computacional , Cisteína Endopeptidases/genética , Células Epiteliais , Técnicas de Inativação de Genes , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactobacillus casei/química , Lactobacillus casei/genética , Mutagênese Insercional , Propriedades de Superfície
16.
Pediatr Res ; 72(1): 77-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453296

RESUMO

INTRODUCTION: Breast milk is an optimal source of nutrition for infants. It contains bioactive components including bacteria that support the microbial colonization and immune system development of the infant. The determinants of human milk composition remain poorly understood, although maternal nutritional and immunological status as well as lifestyle and dietary habits seem to have an impact. METHODS: The subjects selected were women from a prospective follow-up study categorized by BMI. Milk samples were taken after delivery and at 1 and 6 mo later for analysis of composition in regard to transforming growth factor (TGF)-ß2, soluble CD14 (sCD14), cytokines, and microbiota. RESULTS: TGF-ß2 and sCD14 levels in the breast milk of overweight mothers tended to be lower than the levels in that of normal-weight mothers. Also, higher levels of Staphylococcus group bacteria and lower levels of Bifidobacterium group bacteria were detected in overweight mothers as compared with normal-weight ones. The prevalence of Akkermansia muciniphila-type bacteria was also higher in overweight mothers, and the numbers of these bacteria were related to the interleukin (IL)-6 concentration in the colostrum, which was in turn related to lower counts of Bifidobacterium group bacteria in the breast milk of overweight women. DISCUSSION: Complex interactions of cytokines and microbiota in breast milk guide the microbiological, immunological, and metabolic programming of infant health. Our data may indicate the presence of an additional mechanism that may explain the heightened risk of obesity for infants of overweight and excessive weight gain mothers.


Assuntos
Imunomodulação/imunologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Leite Humano/imunologia , Ganho de Peso/fisiologia , Citocinas/análise , Feminino , Humanos , Receptores de Lipopolissacarídeos/análise , Fenômenos Fisiológicos da Nutrição Materna/imunologia , Metagenoma/genética , Leite Humano/química , Leite Humano/microbiologia , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Fator de Crescimento Transformador beta2/análise
17.
BMC Microbiol ; 8: 232, 2008 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19102766

RESUMO

BACKGROUND: Gut bifidobacteria are believed to influence immune-related diseases. The objective of this study was to assess the possible relationships between the gut bifidobacteria composition and coeliac disease (CD) in children. A total of 48 faecal samples (30 and 18 samples from active and no active CD patients, respectively) and 33 duodenal biopsy specimens of CD patients (25 and 8 samples from active and non-active CD patients, respectively) were analysed. Samples (30 faecal samples and 8 biopsies) from a control age-matched group of children were also included for comparative purposes. Gut Bifidobacterium genus and species were analyzed by real-time PCR. RESULTS: Active and non-active CD patients showed lower numbers of total Bifidobacterium and B. longum species in faeces and duodenal biopsies than controls, and these differences were particularly remarkable between active CD patients and controls. B. catenulatum prevalence was higher in biopsies of controls than in those of active and non-active CD patients, whereas B. dentium prevalence was higher in faeces of non-active CD patients than in controls. Correlations between levels of Bifidobacterium and B. longum species in faecal and biopsy samples were detected in both CD patients and controls. CONCLUSION: Reductions in total Bifidobacterium and B. longum populations were associated with both active and non-active CD when compared to controls. These bacterial groups could constitute novel targets for adjuvant dietary therapies although the confirmation of this hypothesis would require further investigations.


Assuntos
Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Doença Celíaca/microbiologia , Duodeno/microbiologia , Fezes/microbiologia , Bifidobacterium/genética , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Criança , Pré-Escolar , Dieta Livre de Glúten , Feminino , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA